摘要
图G内的任意两点u和u,u-v测地线是指u和v之间的最短路.I(u,v)表示位于u-v测地线上所有点的集合,对于子集S(?)V(G),I(S)表示所有I(u,v)的并,这里u,v∈S.图G的测地数g(G)是使I(S)=V(G)的点集S的最小基数.本文研究了任意连通图G与树T笛卡儿积的测地数的界,同时,给出了任意两个树T^1与T^2笛卡儿积的测地数和树T与圈C笛卡儿积的测地数.
For any two vertices u and v in a graph G, a u- v geodesic is the shortest path between u and v. Let I(u, v) denote the set of all vertices lying on a u - v geodesic. For a vertex subset S, let I(S) denote the union of all I(u, v) for u, v ∈ S. The geodetic number g(G) of a graph G is the minimum cardinality of a set S with I(S) = V(G). In this paper, we give some bounds of g(G × T) for any graph G, where T is a tree. Moreover, the geodetic number of T^1 × T^2 and Ck × T are presented, where T^1 and T^2 are trees, Ck is a cycle of order k.
出处
《应用数学学报》
CSCD
北大核心
2008年第3期514-519,共6页
Acta Mathematicae Applicatae Sinica
基金
安徽省教育厅自然科学基金资助项目(批准号:2006KJ256B
KJ2007B124).
关键词
笛卡儿积
测地线
测地数
cartesian product
geodesic
geodetic number