期刊文献+

树的笛卡儿积的测地数 被引量:2

The Geodetic Numbers of Cartesian Products of Trees
原文传递
导出
摘要 图G内的任意两点u和u,u-v测地线是指u和v之间的最短路.I(u,v)表示位于u-v测地线上所有点的集合,对于子集S(?)V(G),I(S)表示所有I(u,v)的并,这里u,v∈S.图G的测地数g(G)是使I(S)=V(G)的点集S的最小基数.本文研究了任意连通图G与树T笛卡儿积的测地数的界,同时,给出了任意两个树T^1与T^2笛卡儿积的测地数和树T与圈C笛卡儿积的测地数. For any two vertices u and v in a graph G, a u- v geodesic is the shortest path between u and v. Let I(u, v) denote the set of all vertices lying on a u - v geodesic. For a vertex subset S, let I(S) denote the union of all I(u, v) for u, v ∈ S. The geodetic number g(G) of a graph G is the minimum cardinality of a set S with I(S) = V(G). In this paper, we give some bounds of g(G × T) for any graph G, where T is a tree. Moreover, the geodetic number of T^1 × T^2 and Ck × T are presented, where T^1 and T^2 are trees, Ck is a cycle of order k.
出处 《应用数学学报》 CSCD 北大核心 2008年第3期514-519,共6页 Acta Mathematicae Applicatae Sinica
基金 安徽省教育厅自然科学基金资助项目(批准号:2006KJ256B KJ2007B124).
关键词 笛卡儿积 测地线 测地数 cartesian product geodesic geodetic number
  • 相关文献

参考文献1

二级参考文献10

  • 1Bonnesens T,Fenchel W.Theorie der Konvexen (K)rper[M].Berlin:Springer,1934.
  • 2Buckley F,Harary F.Distance in Graphs[M].Redwood City,CA:Addison-Wesley,1990.
  • 3Harary F,Nieminen J.Convexity in graph[J].J.Differential Geom,1981,16:185~190.
  • 4Everett M G,Seidman S B.The hull number of a graph[J].Discrete Math.,1985,57:185~190.
  • 5Chartrand G,Harary F,Zhang P.On hull number of a graph[J].Ars Combin,2000,20:129~138.
  • 6Chartrand G,Zhang P.The geodetic number of an oriented graph[J].European J.Combin.,2000,21:181~189.
  • 7Chartrand G,Harary F,Zhang P.On the geodetic number of a graph[J].Netwoks,2002,39:1~6.
  • 8Chang G J,Tong L D,Wang H T.Geodetic spectra of graphs[J].European J.Combin.,2004,25:383~391.
  • 9Chartrand G,Zhang P.The forcing geodetic number of a graph[J].Discuss.Math.Graph Theory,1999,19:45~48.
  • 10Kang Chaoxiang.Geodetic numbers of Graphs[D].Taiwan:Taiwan University,2004.

共引文献4

同被引文献4

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部