期刊文献+

标度广义效应代数和标度效应代数的结构 被引量:4

Construction of Scale Generalized Effect Algebras and Scale Effect Algebras
原文传递
导出
摘要 研究了标度广义效应代数与标度效应代数的代数结构,给出了比较完整的结果.通过引入全标度广义代数的概念,本文证明了区间[0,1)上的标度广义效应代数和单位区间[0,1]上的标度效应代数完全由单位区间上的阿基米德余模确定,标度广义效应代数恰同构于全标度广义代数的下集.若标度广义代数满足局部有限条件,则它同构于实数加法群的子群代数.满足(S)条件的标度效应代数同构于实数加法群的子群代数和全标度广义代数的字典序乘积的子代数. The complete constructions of scale generalized effect algebras and scale effect algebras are studied in this paper. We introduce the concept of total scale generalized algebra, then we show that scale generalized effect algebras on the interval [0, 1) and scale effect algebras on the unit interval [0, 1] are completely determined by the Archimedean co-norm on the unit interval [0, 1]. Scale generalized effect algebras are exactly the lower set of total scale generalized algebras. Furthermore, if a scale general- ized effect algebra is locally finite, then it is isomorphic to a sub-algebra of real additive group. Scale effect algebra satisfying (S) condition is isomorphic to the lexicographic product of a sub-algebra of real additive group and a total scale generalized algebra.
作者 李永明
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2008年第5期863-876,共14页 Acta Mathematica Sinica:Chinese Series
基金 国家自然科学基金资助项目(10571112) 陕西省自然科学基础研究计划项目(2007A06) 陕西师范大学211工程平台建设资助项目
关键词 量子逻辑 广义效应代数 效应代数 quantum logic generalized effect algebra effect algebra
  • 相关文献

参考文献2

二级参考文献10

  • 1李容录,李龙锁,姜信玟.Summability results for operator matrices on topological vector spaces[J].Science China Mathematics,2001,44(10):1300-1311. 被引量:6
  • 2[1]Moreland,T.,Gudder,S.,Infima of Hilbert space effects,Linear Algebra and Its Applications,1999,286:1-17.
  • 3[2]Kadison,R.,Order properties of bounded self-adjoint operators,Proc.Amer.Math.Soc.,1951,34:505-510.
  • 4[3]Gheondea,A.,Gudder,S.,Sequential product of quantum effect,Proc.Amer.Math.Soc.,2004,132:503-512.
  • 5[4]Gudder,S.,Lattice properties of quantum effects,J.Math.Phys.,1996,37:2637-2642.
  • 6[5]Lajos Molnár,Preservers on Hilbert space effects,Linear Algebra and Its Applications,2003,370:287-300.
  • 7[6]Yang,J.,A note on commutativity up to a factor of bounded operators,Proc.Amer.Math.Soc.,2004,132:1713-1720.
  • 8[7]Du,H.,Another generalization of Anderson's theorem,Proc.Amer.Math.Soc.,1995,123:2709 2714.
  • 9[8]Ando,T.,Problem of infimum in the positive cone,Analytic and Geometric Inequalities and Applications,1999,478:1-12.
  • 10[9]Conway,J.,A Course in Functional Analysis,New Youk:Spring-Verlag,1990.

共引文献16

同被引文献30

  • 1周红军,王国俊.R_0-代数上的Fuzzy同余关系[J].模糊系统与数学,2005,19(4):18-27. 被引量:3
  • 2颉永建,王国俊.广义R_0-代数[J].模糊系统与数学,2005,19(4):39-44. 被引量:4
  • 3杜鸿科,邓春源,李启慧.量子效应的下确界问题[J].中国科学(A辑),2006,36(3):320-332. 被引量:2
  • 4朱怡权.R_0-代数的Boole可补元与直积分解[J].高校应用数学学报(A辑),2006,21(4):495-500. 被引量:5
  • 5Dvureveenskij A, Pulmannova S. New trends in quantum structures [ M] Dordrecht: Kluwer Academic Publishers, 2000 : 10-69,191-229.
  • 6Foulis D J, Bennett M K. Effect algebras and unsharp quantum logic [J]. Foundations of Physics, 1994, 24 (10): 1 331-1 352.
  • 7Dvurevcenskij A. Perfect effect algebras are categorically equivalent with abelian interpolation po-groups [ J ]. Journal of the Australian Mathematical Society, 2007, 82(2) : 183-207.
  • 8Gudder S, Pulmannova S. Quotients of partial abelian monoids[J]. Algebra Universalis, 1997, 38 (4) : 395- 421.
  • 9Pulmannova S. Congruences in partial abelian semigroups[J]. Algebra Universalis, 1997, 37 (1): 119- 140.
  • 10Jerca G. Notes on Rl-ideals in partial abelian monoids [J]. Algebra Universalis,2000, 43(4) : 307-319.

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部