期刊文献+

多尺度分析生成元的刻画

Characterization of Generators for Multiresolution Analysis
原文传递
导出
摘要 本文将给出多尺度分析生成元的一种完全刻画.将证明:函数φ∈L^2(R)是二进多尺度分析生成元的充要条件是(1)存在{a_k}∈l^2,φ(x)=∑_(k∈Z)a_kφ(2x-k);(2)存在正数A<B,使得A■Φ(ω)■B,a.e.,其中Φ(ω)=∑_(l∈Z)|■(ω+2lπ)|~2;(3)函数F(x,y)=(1/y-x)∫_x^y|■(ω)|~2dω是在原点二进远离零的. We give a complete characterization of generators for multiresolution analysis. Precisely, we prove the following results: φ∈L^2(R) is a genarator of a dyadic multireso- lution if and only if (1) there exists {ak)∈l^2, such thatφ(x)=∑k∈z^αkφ(2x-k);; (2) there exists positive numbers A and B such thatA≤Φ(ω)≤B,a.e.., where Φ(ω)=∑l∈z|φ(ω+2lπ)|^2; (3) the function F(x,y)=1/y-x ∫x^y|φ(ω)|^2dω is dyadiely away from zero at the origin.
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2008年第5期1035-1040,共6页 Acta Mathematica Sinica:Chinese Series
基金 国家自然科学基金资助项目(10671062)
关键词 多尺度分析 生成元 RIESZ基 multiresolution analysis generators Riesz bases
  • 相关文献

参考文献8

  • 1Mallat S., Multiresolution approximations and wavelets orthonomal bases of L2(N), Trans. Amer. Math. Soc., 1989, 315: 69-87.
  • 2Daubechies I., Orthonormal bases of compactly supported wavelets, Comm. Pure Appl. Math., 1988, 41: 909-996.
  • 3Daubechies I., Ten lectures on waveletes, CBMS-NSF Series in Applied Math. Vol.61. SIAM Philapelphia, 1992.
  • 4Chui C. K., An introduction to wavelets, Academic Press, Inc., 1992.
  • 5Chui C. K., Wang J. Z., On compactly supported spline wavelets and a duality principle, Trans. Amer. Math. Soc., 1992, 330: 903-915.
  • 6Sun Q. Y.I Bi N., Huang D. R., An introduction to multiresolution wavelets, Hangzhou: Zhejiang University, 2001.
  • 7Young R. M., An introduction to nonharmonic fourier series, New York: Academic Press, 1980.
  • 8Sun Q. Y., Stability of the shifts-of global supported-distributions, J. Math. And Appl., 2001, 261: 113-115.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部