期刊文献+

分子动力学模拟纳米尺寸限制体系下氩溶液中I2的振动能量弛豫 被引量:3

Molecular Dynamics Simulation of the Vibrational Energy Relaxation of I_2 in Nano-confined Argon Solution
下载PDF
导出
摘要 利用平衡态分子动力学方法(EMD)模拟了纳米尺寸限制球壳内I2在Ar溶液中的振动能量转移.计算并讨论了I2振动能量弛豫时间T1随球壳半径、溶剂密度的变化规律.通过分子间相互作用分析,在原子、分子水平上,揭示了随着球壳半径的减小,T1呈逐渐增大趋势的原因.结果表明,球壳的几何限制效应和表面作用对受限溶液密度分布的影响较大,从而导致溶质振动弛豫的显著变化.此外,非限制体系模拟显示,非平衡态分子动力学(NEMD)方法可以得到与平衡态分子动力学方法较一致的振动能量弛豫时间T1. The vibrational energy transfer of I2 in argon solution confined in a nano-spherical cavity has been simulated by the equifibrium molecular dynamics (EMD) approach. The solute vibrational energy relaxation time T1, as a function of the radius of the spherical cavity and the solvent density, is calculated and discussed. According to the analysis of intermolecular interactions at atomic and molecular level, the reason of T1 increasing with the cavity radius decreasing is explored. The results showed that the geometry confinement and surface effect played an important role in the solvent distribution, which would influence the vibrational relaxation significantly. In addition, the simulations of bulk system indicated the values of T1 obtained by EMD and non-equilibrium molecular dynamics (NEMD) were in good agreement for I2/Ar system.
出处 《物理化学学报》 SCIE CAS CSCD 北大核心 2008年第8期1451-1458,共8页 Acta Physico-Chimica Sinica
基金 国家自然科学基金(20573012、20633050) 辽宁省教育厅(05L027) 辽宁省优秀人才培养计划(2007R02)资助项目
关键词 纳米限制溶液 平衡态分子动力学 振动能量弛豫时间 径向密度分布 非平衡态分子动力学 Nano-confined solution Equilibrium molecular dynamics Vibrational energy relaxation time Radial density distribution Non-equilibrium molecular dynamics
  • 相关文献

参考文献50

  • 1Czeslik, C.; Kim, Y. J.; Jonas, J. J. Raman Spectrosc.,2000, 31: 571.
  • 2Korb, J. P,; Xu, S.; Jonas, J. J. Chem. Phys., 1993, 98:2411.
  • 3Wallen, S. L.; Nikiel, L.; Yi, J.; Jonas, J. J. Phys. Chem., 1995, 99: 15421.
  • 4Chen, H.; Sholl, D. S. J. Am. Chem. Soc., 2004, 126:7778.
  • 5Zhong, Q.; Owrutsky, J. C. Chem. Phys. Lett., 2004, 383:176.
  • 6Huang, L.; Zhang, L.; Shao, Q.; Lu, L.; Lu, X.; Jiang, S.; Shen, W. J. Phys. Chem. C, 2007, 111:11912.
  • 7Sonoda, M. T.; Skaf, M. S. J. Phys. Chem. B, 2007, 111:11948.
  • 8Li, S.; Thompson, W. H. J. Phys. Chem. B, 2005, 109:4941.
  • 9Li, S.; Thompson, W. H. Chem. Phys. Lett., 2004, 383:326.
  • 10Shao, Q.; Huang, L.; Zhou, J.; Lu, L.; Zhang, L.; Lu, X.; Jiang, S.; Gubbins, K. E.; Zhu, Y.; Shen, W. J. Phys. Chem. C, 2007, 111: 15677.

二级参考文献111

  • 1[86]Miller W H. J. Phys. Chem., 2001, A108: 2942
  • 2[87]Pollak E, Liao J L. J. Chem. Phys., 1998, 108: 2733
  • 3[88]Egorov S A, Gallicchio E, Berne B J. J. Chem. Phys., 1997, 107: 9312
  • 4[89]Markri N, Thompson K. Chem. Phys. Lett., 1998, 291:101
  • 5[90]Markri N, Shao J. Low-Lying Potential Energy Surfaces (eds. Hoffmann R, Dyall K G). Washington: American Chemical Society, 2002, 400-417
  • 6[91]Yan Y A, Shao J. J. Theor. Comp. Chem., 2003, 2: 419-437
  • 7[23]Rey R, Hynes J T. J. Chem. Phys., 1996,104: 2356
  • 8[24]Stratt R M. Accounts Chem. Res., 1995, 28: 201-207
  • 9[25]Ladanyi B M, Stratt R M. J. Phys. Chem., 1996, 100: 1266
  • 10[1]Owrutsky J C, Raftery D, Hochstrasser R M. Annul. Rev. Phys. Chem., 1994, 45: 519

同被引文献69

  • 1张永强,李元,李冬梅,刘文,刘德胜,解士杰.一维导电共聚物中极化子输运的动力学研究[J].原子与分子物理学报,2007,24(3):493-499. 被引量:8
  • 2Riter, R. E.; Willard, D. M.; Levinger, N. E. J. Phys. Chem. B, 1998, 102:2705.
  • 3Li, S.; Shepherd, T. D.; Thompson, W. H. J. Phys. Chem. A, 2004, 108:7347.
  • 4Thompson, W. H. J. Chem. Phys., 2002, 117:6618.
  • 5Morales, C. M.; Thompson, W. H. J. Phys. Chem. B, 2008, 112: 313.
  • 6Yi, J.; Jonas, J. J. Phys. Chem., 1996, 100:16789.
  • 7Czeslik, C.; Kim, Y. J.; Jonas, J. J. Raman Spectrosc., 2000, 31: 571.
  • 8Zhong, Q.; Steinhurst, D. A.; Carpenter, E. E.; Owrutsky, J. C. Langmuir, 2002, 18:7401.
  • 9Scheidler, P.; Kob, W.; Binder, K. J. Phys. Chem. B, 2004, 108: 6673.
  • 10Piletic, I. R.; Moilanen, D. E.; Spry, D. B.; Levinger, N. E.; Fayer, M. D. J. Phys. Chem. A, 2006, 110:4985.

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部