期刊文献+

模式密度方法在结构异常检测中的应用研究 被引量:3

Application of structural damage diagnosis using density-based outlier detection
下载PDF
导出
摘要 结构损伤发生后,结构的动力特性将随之改变,因此可通过检测动力特性的异常来判断结构的健康状况。研究了基于模式密度的异常检测在损伤诊断中的应用,该方法具有无需建立训练模型,能够支持模式动态更新等优点。以ASCE学会提出的基准结构为对象,采用基于相空间重构的奇异值分解技术提取适当个数的奇异值构造特征模式集,应用模式密度方法检测结构异常状况。仿真和试验结果表明,该方法能有效地检测损伤的发生。 The performance of structural vibration varies with the change of the structural condition. Therefore the variation of vibration signals is helpful to detect early damage in the structure. Density-based outlier detection is introduced to diagnosis the damage in a structure. The advantages of the method are that it does not require establishing a training model and is capable of updating dynamically. For demonstration a numerical and experiment study on health monitoring of the ASCE benchmark model is performed. First, appropriate numbers of singular values are extracted using singular value decomposition and phase space reconstruction to act as feature parameter. Then the density-based outlier detection is employed to diagnosis the damage. The analysis results show that the proposed method is effective in damage detection.
出处 《振动工程学报》 EI CSCD 北大核心 2008年第4期343-348,共6页 Journal of Vibration Engineering
基金 湖南省交通厅科技资助项目(200223)
关键词 结构损伤 密度 异常检测 相空间重构 奇异值 structural damage density outlier detection phase space reconstruction singular value
  • 相关文献

参考文献8

  • 1Jyrki Kullaa. Damage detection of the Z24 bridge using control charts [J]. Mechanical Systems and Signal Processing,2003,17(1) : 163-170.
  • 2Zhi Sun. Wavelet packet based structural health monitoring and damage assessment [D]. Hong Kong: the Hong Kong University of Science and Technology, 2003.
  • 3K Krishnan Nair, Anne S Kiremidjian, Kincho H Law. Time series-based damage detection and localization algorithm with application to the ASCE benchmark structure [J]. Journal of Sound and Vibration, 2006,291 : 349-368.
  • 4樊可清,倪一清,高赞明.基于频域系统辨识和支持向量机的桥梁状态监测方法[J].工程力学,2004,21(5):25-30. 被引量:12
  • 5董永贵,孙照焱,贾惠波.振动信号异常值的免疫机制检测算法[J].清华大学学报(自然科学版),2004,44(5):625-628. 被引量:12
  • 6Markus M Breunig,Hans-Peter Kridgel, Raymond T, Ng, et al. LOF: Identifying density-based local outliers[A]. Proc. ACM SIGMOND Int. Conf. on Management of Data[C]. NEW YORK,2000:1-12.
  • 7Ren Dongmei, Wang Baoying,William Perrizo. RDF: A density-based outlier detection method using vertical data representation [A]. Proceeding of the Fourth IEEE International Conference on Data Mining[C]. 2004. 503-506.
  • 8Dyke S J. Structural Health Monitoring Committee. http://mase. wustl. edu/wusceel/asce.shm/ benchmarks. htm. uk, Oct. 16,2001.

二级参考文献18

  • 1[3]Y Q Ni, X T Zhou, J M Ko, B S Wang. Vibration based damage localization in ting kau bridge using probabilistic neural network [D]. Advances in Structural Dynamics, J.M. Ko and Y.L. Xu (eds.), Elsevier Science Ltd., Oxford, UK, 2000, (II): 1069-1076.
  • 2[4]J Maeck, B Peeters, G De Roeck. Damage identification on the Z24 bridge using vibration monitoring [J]. Smart Materials and Structures, 2001, 10(3): 512-517.
  • 3[5]Cunha A, Caetano E, Calcada R, Delgado R. Modal identification and correlation with finite element parameters of vasco da gama bridge [D]. In Proceedings of IMAC 17, Kissimmee, FL, USA, February, 1999. 705-711.
  • 4[6]Rune Brincker, Lingmi Zhang and Palle Andersen. Modal identification of output-only systems using frequency domain decomposition [J]. Smart Material and Structures, 2001,10(3): 441-445.
  • 5[7]Q Qin, H B Li and L Z Qian. Modal identification of Ting Ma bridge by using improved eigensystem realization algorithm [J]. Journal of Sound and Vibration 2001, 247(2): 325-341.
  • 6[8]Shih C Y, Tsuei Y G, Allemang R J, Brown D L. Complex mode indication function and its application to spatial domain parameter estimation [J]. Mechanical System and Signal Processing, 1988, 12(4): 367-377.
  • 7[9]Ljung L. System identification [M]. Theory for the User, Second edition, Prentice Hall, Upper Saddle River, NJ, USA, 1999.
  • 8[10]David M J Tax, Robert P W Duin. Data domain description using support vectors [D]. Proceedings of European Symposium on Artificial Neural Networks '99, Brussels, 1999. 251-256.
  • 9[11]Christopher J C Burges. A tutorial on support vector machines for pattern recognition [J]. Data Mining and Knowledge Discovery 1998, 2(2): 121-167.
  • 10Hofmeyr S,Forrest S.Architecture for an artificial immune system [J].Evolutionary Computation J,2000,8(4):443-473.

共引文献21

同被引文献22

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部