期刊文献+

基于遗传算法的混凝土热学参数反分析与反馈研究 被引量:5

Back Analysis of Concrete Thermal Parameters and Study of Feedback Based on Genetic Algorithm
下载PDF
导出
摘要 混凝土热学参数主要是通过室内试验得到的,不能真实地反应施工现场的混凝土热学性能.针对这一问题,结合工程现场实测的混凝土温度,利用遗传算法对混凝土温度场进行反演计算,并将计算值和实测值进行对比,分析计算结果的合理性,得到反映混凝土真实热学性能的参数.结合混凝土温度场应力场的基本原理和水管冷却的精确算法,利用这些参数,通过三维有限元仿真计算程序对施工现场混凝土温度场进行反馈计算,确定温控防裂措施,指导后续施工.结果表明,该方法可成为替代用室内试验和经验公式选取热学参数的有效途径. At present, many thermal parameters of concrete used in engineering are mainly obtained from laboratory test, so they cannot indicate the real thermal properties of concrete in site. In view of this problem, the genetic algorithm is adopted to carry out the back analysis of parameters of concrete thermal field according to the measured temperature of concrete in situ test, and then the calculation temperature is compared with the measured temperature for the rationality of results. Using these parameters and under the basic theories of temperature field and stress field of concrete, the feedback study of concrete temperature during construction is carried out by the 3D FEM with the numerical algorithm of pipe cooling, and then the methods of temperature control and crack prevention are accepted to direct the following construction. The result shows that the method can replace laboratory test and empirical formula as one of effective way for thermal parameters selection, so it should have great reference signification to similar concrete projects in the future.
出处 《武汉理工大学学报(交通科学与工程版)》 2008年第4期599-602,共4页 Journal of Wuhan University of Technology(Transportation Science & Engineering)
基金 国家自然科学基金项目(批准号:50579080) 水利部科技创新重点项目(批准号:SCXC2003-10) 河海大学院士学科发展基金项目(批准号:HHUYS003)资助
关键词 遗传算法 温控防裂 反分析 反馈 水管冷却 genetic algorithm temperature control and crack prevention reverse analysis feedback water pipe cooling
  • 相关文献

参考文献8

二级参考文献15

共引文献346

同被引文献42

  • 1张子明,冯树荣,石青春,王嘉航.基于等效时间的混凝土绝热温升[J].河海大学学报(自然科学版),2004,32(5):573-577. 被引量:30
  • 2朱岳明,王弘,闪黎.混凝土热学参数反问题求解的遗传算法[J].人民长江,2004,35(11):55-57. 被引量:10
  • 3马跃峰,朱岳明,刘有志,宁勇.姜唐湖退水闸泵送混凝土温控防裂反馈研究[J].水力发电,2006,32(1):33-35. 被引量:22
  • 4武妍,徐敏.一种改进的粒子群优化算法[J].计算机工程与应用,2006,42(33):40-42. 被引量:19
  • 5Hyvarinen A, Oja E. Independent component analysis: algorithms and applications [J]. Neural Networks, 2000, 13(4-5): 411-430.
  • 6Hyvarinen A, Karhunen J, Oja E. Independent component analysis [M]. New York: John Wiley Sons, Inc, 2001.
  • 7Bach F, Jordan M J. Kernel independent component analysis[J], Journal of Machine Learning Research, 2002(3):1-48.
  • 8Shen H, Jegelka S, Gretton A. Fast kernel ICA using an approximate newton method[C]//Proceedings of the llth International Conference on Artificial Intelligence and Statistics (AISTATS) 2007: 476- 483.
  • 9TheodoridisS,KoutroumbasK.模式识别[M].3版.李晶皎,译.北京:机械工业出版社,2006.
  • 10ALTOUBAT S A,LANGE D A.Creep.shrinkage and cracking of restrained concrete at early age[J].ACI Materials Journal,2001,98(4):323-332.

引证文献5

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部