期刊文献+

一类不确定时滞系统的鲁棒稳定性:Krasovskii定理 被引量:1

A Class of Uncertain Time-delay Systems for Robust Stability:Krasovskii Theorem
下载PDF
导出
摘要 考虑了一类不确定时滞系统的稳定性问题,应用Krasovskii定理,构造了新的Lyapunov函数,从而得到了该系统零解的鲁棒稳定的几个充分条件;最后给出了实例及其仿真,并且给出了反例说明所得结果的有效性和优越性. This paper is aimed to research the delaying on system stability. We applied Kramvskii Theorem, the zero solution for the uncertain time - delay systems is given several sufficient conditions for robust stability. At last, the simulation of example shows the conditions for the effectiveness.
出处 《广西师范学院学报(自然科学版)》 2008年第2期26-29,44,共5页 Journal of Guangxi Teachers Education University(Natural Science Edition)
基金 广西教育厅科研处面上项目(200707ms063)
关键词 时滞系统 不确定 鲁棒稳定 time - delay systems uncertainty robust stability
  • 相关文献

参考文献4

  • 1GUAN Xinping, CHEN Cailian. On Robust Stablility For uncertaintime-delaysystems:Apolyhedral lyapunov-krosovskii approach[J ]. Brikhauser Boston,2005, (1) : 1-18.
  • 2KHARITONOV V L, PZHABKO A. Lyapunov- krasovskii approach to the robust stability analysis of time- delay system[J]. Automatica, 2003, (39) :15-20.
  • 3顾永如,王守臣,钱积新.一类具有非线性时滞摄动系统的鲁棒稳定性[J].浙江大学学报(自然科学版),2000,34(1):40-42. 被引量:2
  • 4郑大钟.线性系统理论[M].北京:清华大学出版社,2006:236-237.

二级参考文献4

  • 1[1]Cheres E,Palmor I J.Quantitative measures of robustness for systems including delayed perturbations[J].IEEE Trans Automat Contr,1989,AC-34(11):1203~1204.
  • 2[2] Wu H,Mizukam K.Robust stability criteria for dynamical systems including delayed perturbations[J].IEEE Trans Automat Contr,1995,AC-40(3):487~489.
  • 3[3] Xu B,Liu Y.An improved razumikhin-type theorem and its applications[J]. IEEE Trans Automat Contr, 1994,AC-39(4):839~841.
  • 4[4] Chen H G,Han K W.Improved quantitative measures of robustness for multiva

共引文献4

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部