期刊文献+

Adaptive explicit Magnus numerical method for nonlinear dynamical systems

Adaptive explicit Magnus numerical method for nonlinear dynamical systems
下载PDF
导出
摘要 Based on the new explicit Magnus expansion developed for nonlinear equations defined on a matrix Lie group, an efficient numerical method is proposed for nonlinear dynamical systems. To improve computational efficiency, the integration step size can be adaptively controlled. Validity and effectiveness of the method are shown by application to several nonlinear dynamical systems including the Duffing system, the van der Pol system with strong stiffness, and the nonlinear Hamiltonian pendulum system. Based on the new explicit Magnus expansion developed for nonlinear equations defined on a matrix Lie group, an efficient numerical method is proposed for nonlinear dynamical systems. To improve computational efficiency, the integration step size can be adaptively controlled. Validity and effectiveness of the method are shown by application to several nonlinear dynamical systems including the Duffing system, the van der Pol system with strong stiffness, and the nonlinear Hamiltonian pendulum system.
出处 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2008年第9期1111-1118,共8页 应用数学和力学(英文版)
基金 the National Natural Science Foundation of China (No. 10632030 and10572119) the Fundamental Research Foundation of NPU the Scientific and Technological Innovation Foundation for teachers of NPU
关键词 nonlinear dynamical system Hamiltonian system numerical integrator step size control nonlinear dynamical system, Hamiltonian system, numerical integrator,step size control
  • 相关文献

参考文献12

  • 1S. Blanes,F. Casas,J. Ros.High Order Optimized Geometric Integrators for Linear Differential Equations[J].Bit Numerical Mathematics.2002(2)
  • 2A. Iserles,A. Marthinsen,S. P. N?rsett.On the Implementation of the Method of Magnus Series for Linear Differential Equations[J].Bit Numerical Mathematics.1999(2)
  • 3Hairer E,,Lubich C,Wanner G.Geometric numerical integration[]..2006
  • 4Iserles A,Munthe-Kaas H Z,Nφrsett S P,Zanna A.Lie group methods[].Acta Numerica.2000
  • 5Zhang S,Deng Z.A simple and effcient fourth-order integrator for nonlinear dynamic system[].Mechanics Research Communications.2004
  • 6Zhang S,Deng Z.Geometric integration for solving nonlinear dynamic systems based on Magnus series and Fer expansions[].Progress in Natural Science.2005
  • 7Casas F,Iserles A.Explicit Magnus expansions for nonlinear equations[].Journal of Physics A Mathematical and General.2006
  • 8Iserles A,Marthinsen A,Nφrsett S P.On the implementation of the method of Magnus series for linear differential equations[].Borsa Internazionale del Turismo.1999
  • 9W. Magnus.On the exponential solution of differential equations for a linear operator[].Communications in Pure Applied Mathematics.1954
  • 10Iserles A,et al.On the solution of linear differential equations in Lie groups[].Phil Trans R Soc Lond A.1999

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部