期刊文献+

一种基于FP-Growth的改进算法 被引量:2

An improved algorithm based on FP-growth
下载PDF
导出
摘要 关联规则挖掘由于表达形式简洁、易于解释和理解已成为数据挖掘中的研究热点,对关联规则的研究具有重要的理论价值和现实意义。文章分析频繁项集挖掘算法FP-growth算法,针对算法中存在的效率瓶颈问题,提出了一个改进的挖掘算法。改进后的算法通过投影统计的方法直接得到频繁1-项集的条件模式基,从而减少了FP-growth算法中构造FP-tree和搜索的开销。通过分析,说明改进的算法具有良好的性能。 Association rule mining has become an important and active research topic in the data mining due to its succinct, easy to be explained and understood. It has important theoretical value and the practical significance to study the association rules. After analyzing FP- growth association mining algorithm, this paper proposes an improved algorithm to overcome the low efficiency of FP- growth algorithm by adopting the projection method. The improved algorithm can directly obtain the condition pattern of frequent 1 - item, thus it reduces the time cost of building the FP- tree in the FP- growth algorithm. It proved that the improvement algorithm has higher performance than orginal FP- tree algorithm.
作者 郑斌 李涓子
出处 《平顶山工学院学报》 2008年第4期9-12,共4页 Journal of Pingdingshan Institute of Technology
关键词 关联规则 FP—Growth FP—tree 投影统计 association rule FP- growth FP- tree
  • 相关文献

参考文献6

  • 1胡宏银.1999年中国智能自动化学术会议论文集[C].北京:清华大学出版社,1999:812-817.
  • 2R Groth.侯迪等译.数据挖掘-构筑企业竞争优势[M].西安:西安交通大学出版社,2001.
  • 3杨红菊,梁吉业.一种挖掘频繁项集和频繁闭包项集的算法[J].计算机工程与应用,2004,40(13):176-178. 被引量:5
  • 4J Han,J Pei, Y Yin. Mining Frequent Patterns Without Candidate Generation[C]. In: Proe ACM- SIGMOD,Dallas,TX,2000 - 05.
  • 5阮幼林,李庆华,刘干.最大频繁模式的快速挖掘与更新算法[J].计算机工程与应用,2005,41(24):23-26. 被引量:3
  • 6[加]Jiawei Han Micheline Kamber,范明,孟小峰等译.数据挖掘:概念与技术[M].北京:机械工业出版社,2001..

二级参考文献17

  • 1Lin DI,Kedem ZM.Pincer-Search:a New Algorithm for Discovering the Maximum Frequent Set[C].In:Proceedings of the 6th European Conference on Extending Database Technology Heidelberg:Springer- Verlag, 1998 : 105-119.
  • 2Agrawal R,Srikant R.Fast Algorithm for Mining Association Rules[C]. In : VLDB' 94,1994-09 : 489-499.
  • 3Park J S,Chen M-S,Yu P S.An Effective Hash Based Algorithm for Mining Association Rules[C].In:Proc ACM SIGMOD Int Conf on Management of Data, 1995 : 175-186.
  • 4M Y Chen,J Han,P Yu.Data Mining:an Overview from a Database Perspective[J].IEEE Transactions on Knowledge and Data Engineering,1996;8(6):866-883.
  • 5J Han,J Pei,Y Yin.Mining Frequent Patterns Without Candidate Generation[C].In : Proc ACM-SIGMOD, Dallas ,TX, 2000-05.
  • 6Agarwal R,Aggrawal C,V V V P/asad.A Tree Projection Algorithm for Generation of Frequent Itemsets[J].Journal of parallel and Distributed Computing, 2000 : 427-434.
  • 7Huang H,Wu X,Relue R.Association Analysis with One Scan of Databases[C].In : Proc of Pacific-Asia Conference, PAKDD, 2002 : 334-340.
  • 8Guimei Liu,Hongjun Lu,Yabo Xu et al.Ascending Frequency Ordered Prefix-tree :Efficient Mining of Frequent Patterns[C].In :Proc of 8th Database Systems for Advanced Applications(DASFAA'03 ), 2003.
  • 9Bayardo R.Efficiently Mining Long Patterns from Databases[C].In:Proceedings of the ACM SIGMOD International Conference on Management of Data,New York :ACM Press, 1998:85-93.
  • 10R Agrawal,T Imielinski,A Swami. Mining association rules between sets of items in large databases[C].In:The ACM SIGMOD Int′l Conf Management of Data, Washington D C, 1993: 207~216

共引文献6

同被引文献13

引证文献2

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部