期刊文献+

Large带函数约束的拟变分不等式问题的Levitin-Polyak适定性(英文) 被引量:1

Levitin-Polyak Well-Posedness of Quasivariational Inequalities with Functional Constraints
下载PDF
导出
摘要 该文对带函数约束的拟变分不等式问题引入了四种Levitin-Polyak适定性.给出了这些类型的Levitin-Polyak适定性的一些充分条件,必要条件以及充分必要条件. In this paper, we introduce four types of Levitin-Polyak well-posedness for quasivariational inequalities with functional constraints. Necessary and/or sufficient conditions will be derived for these types of Levitin-Polyak well-posedness.
出处 《湘潭大学自然科学学报》 CAS CSCD 北大核心 2008年第3期1-11,共11页 Natural Science Journal of Xiangtan University
基金 国家自然科学基金资助项目(10671039)
关键词 带函数约束的拟变分不等式 近似解序列 Levitin-Polyak适定性 Quasivariational inequalities with functional constraints approximating solution sequence Levitin-Polyak well-posedness
  • 相关文献

参考文献35

  • 1BEDNARCZUK E. Well-posedness of vector optimization problems[J]. Lecture Notes in Economics and Mathematical Systems, 1987,294:51-61.
  • 2BEER G,LUCCHETTI R. The epi-distance topology,continuity and stability results with application to convex optimization problems[J]. Mathematics of Operations Research, 1992,17 : 715 - 726.
  • 3BENSOUSSAN A ,LIONS J L. Controle impulsionelet inequations quasivariationelles d' evolution[J]. Compets Rendus de i' Acad emie des Sciences de Paris,1973,276:1 333-1 338.
  • 4BENSOUSSAN A. Points de Nash dans le cas fontionnelles quadratiques et jeux differrntiels lineaires a N personnes[J]. SIAM Journal on Control, 1974,12:460-499.
  • 5BAIOCCHI C, CAPELO A. Variational and quasivariational inequalities: applications to free boundary problems[M]. New York: John Wiley and Sons, 1984.
  • 6DONTCHEV A L,ZOLEZZI T. Well-posed optimization problems[J]. Lecture Notes in Mathematics, 1993,1 543.
  • 7DENG S. Coercivity properties and well-posedness in vector optimization[J]. RAIRO Oper Res, 2003,37:195-- 208.
  • 8FUKUSHIMA M. A class of quasi-variational inequality problems[J]. Journal of Industrial and Management Optimization, 2007, 3:165-171.
  • 9FURI M, VIGNOLI A. About well-posed minimization problems for functionals in metric spaces[J]. Journal of Optimization Theory and Applications, 1970,5 : 225 - 229.
  • 10HARKER P T,PANG J S. Finite-dimensional variational inequality and nonlinear complementarity problems: Asurvey of theory, algorithms and applications[J]. Mathematical Programming, 1990,48:161-220.

同被引文献1

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部