摘要
引入了一种Noether代数及其模上的新的对偶,即J-adic对偶,此处,J是给定代数的Jacobson根.证明了Noether代数A的J-adic对偶(记作A□)是余代数,A-模的J-adic对偶是余模;当A是Hopf代数时,若J满足适当的条件,则A的J-adic对偶A□是Hopf代数.
A new method of dual, named J-adic dual, on Noetherian algebras and modules is introduced, where J is the Jacobson radical of a given Noetherian algebra. It is proved that the J-adic dual (denoted by A^□ ) of a Noetherian algebra A is a coalgebra, and the J-adic dual of a module over a Noetherian algebra is a comodule. Moreover, A^□ is a Hopf algebra if A is a Hopf algebra and the Jacobson radical J satisfies some suitable conditions.
出处
《浙江大学学报(理学版)》
CAS
CSCD
北大核心
2008年第5期485-488,共4页
Journal of Zhejiang University(Science Edition)
基金
浙江省自然科学基金资助项目(Y607075)