期刊文献+

基于三角形结构计算GRM展开系数的新算法 被引量:1

New algorithm of the evaluation of generalized Reed-Muller coefficients based on triangle module
下载PDF
导出
摘要 分析了单变量、两变量和n变量逻辑函数GRM展开系数的递推三角形结构,相应的三角形的左边或右边表示某固定极性下的GRM展开系数.进一步分析表明极性为q的GRM展开系数即为自上向下由各行脚标中含q的项.在此基础上提出了基于三角形结构计算GRM展开系数的新算法.与已有算法相比,本文提出的算法在速度上优于其他算法. The recursive triangle modules of the Generalized Reed Muller(GRM) expansion coefficients for the single variable, two-variable and n-variable logic functions were analyzed. The GRM expansion coefficients with q polarity were formed by the left or right sides of the corresponding triangle cells, and may be also formed by the terms containing q in the subscript of ci in each line. Based on it, a new algorithm of the evaluation of the GRM expansion coefficients with fixed polarity based upon the triangle module was presented. The comparison result showed that this algorithm is faster than other ones in references.
出处 《浙江大学学报(理学版)》 CAS CSCD 北大核心 2008年第5期538-540,545,共4页 Journal of Zhejiang University(Science Edition)
基金 浙江省自然科学基金资助项目(Y104368)
关键词 三角形结构 GRM展开 固定极性 最小化技术 triangle module GRM expansion fixed polarity minimization technique
  • 相关文献

参考文献5

  • 1WU X, CHEN X, HURST S L. Mapping of Reed-Muller coefficients and the minimization of exclusive OR-switching functions[J]. IEE Proc pt E, 1982,129 (1):15-20.
  • 2BESSLICH W. Efficient computer method for ExOR logicdesign[J]. IEEProeptE,1983,130(6):203-206.
  • 3GREEN D. Modern Logic Design [M]. Wokingham: Addison-Wesley Publishing Company, 1986.
  • 4GI S N, SANG W K. Recursive evaluation of the gen eralized Reed-Muller coefficients[C]// 33 st IEEE In ternational Symposium on Multiple-Valued Logic. Tokyo: IEEE Society Press, 2003:117-121.
  • 5金瓯,陈偕雄.异或函数在固定极性下化简的新算法[J].杭州大学学报(自然科学版),1992,19(2):227-228. 被引量:3

二级参考文献2

  • 1吴训威,计算机学报,1984年,7卷,3期,210页
  • 2吴训威,Proc IEE PT E,1982年,129卷,1期,15页

共引文献2

同被引文献9

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部