期刊文献+

基于加权最小平方误差boosting的人脸检测

A face Detection Based on a Weighted Least Squares Error Boosting Algorithm
下载PDF
导出
摘要 近年来Adaboost算法被成功地用于人脸检测中,本文给出了一种基于加权最小平方误差boos-ting算法的人脸检测。首先本方法在每一次循环中用加权最小平方误差准则训练弱假设,与原始Ada-boost算法不同的是弱假设的生成不仅用于预测分类,而且用于估计每次预测的自信率,然后由这组含自信率的弱假设集成构造出强分类器。实践表明基于加权最小平方误差boosting算法的分类器有较高的检测率和较低的正样本误检率。 Recently AdaBoost algorithm was successfully applied to solve the problems of face detection. This paper presents a face detection based on a weighted least squares error boosting algorithm. First this method trains the weak hypothesis with the minimum weighted least squares error at each iteration. What differs from the original AdaBoost is that each weak hypothesis generates not only predicted classifications, but also estimate the confidence - rated of each of its predictions. Then, The final hypothesis is combination of the weak hypotheses whose predictions are confidence - rated. Experimental results prove that the classifiers based on a weighted least squares error boosting algorithm have a higher detection rate but a lower false positive rate.
出处 《嘉应学院学报》 2008年第3期89-92,共4页 Journal of Jiaying University
关键词 人脸检测 ADABOOST BOOSTING算法 加权最小平方误差 Face Detection AdaBoost boosting algorithm weighted least squares error
  • 相关文献

参考文献5

  • 1梁路宏,艾海舟,徐光祐,张钹.人脸检测研究综述[J].计算机学报,2002,25(5):449-458. 被引量:354
  • 2VIOLA P,JONES M. Rapid Object Detection Using a Boosted Cascade of Simple Features[ C]. USA:IEEE CVPR,2001:511 -518.
  • 3FREUND Y,SCHAPIRE R E. A decision - theoretic generalization of on - line learning and an application to boosting[ J]. Journal of Computer and System Sciences, August 1997,55 ( 1 ) : 119 - 139.
  • 4FRIEDMAN J,HASTIE T,TIBSHIRANI R. Additive Logistic Regression: A Statistical View of Boosting[ J]. Annals of Statistics,2000, 28:337 - 374.
  • 5VIOLA P, JONES M. Robust Real time Object Detection[ J ]. International Journal of Computer Vision, 2004,57 (2) :137 -154.

二级参考文献61

  • 1Craw I, Ellis H, Lishman J. Automatic extraction of face features. Pattern Recognition Letters, 1987, 5(2):183-187
  • 2Yang G Z, Huang T S. Human face detection in a complex background. Pattern Recognition, 1994, 27(1):53-63
  • 3Dai Y, Nakano Y. Face-texture model based on SGLD and its application in face detection in a color scene. Pattern Recognition, 1996, 29(6):1007-1017
  • 4Kouzani A Z, He F, Sammut K. Commonsense knowledge-based face detection. In: Proc Conference on Intelligent Engineering Systems, Budapast, Hungary, 1997. 215-220
  • 5Garcia C, Tziritas G. Face detection using quantized skin color regions merging and wavelet packet analysis. IEEE Trans Multimedia, 1999, 1(3):264-277
  • 6Sun Q B, Huang W M, Wu J K. Face detection based on color and local symmetry information. In: Proc Conference Automatic Face and Gesture Recognition, Nara, Japan, 1998. 130-135
  • 7Kim S H, Kim H G. Face detection using multi-modal information. In: Proc Conference on Automatic Face and Gesture Recognition, Grenoble, France, 2000. 70-76
  • 8Govindaraju V, Srihari S N, Sher D B. A computational model for face location. In: Proc IEEE Conference on Computer Vision, Osaka, Japan, 1990. 718-721
  • 9Lam K M. A fast approach for detecting human faces in a complex background. In: Proc Symposium on Circuits and Systems, Monterey, 1998, 4:85-88
  • 10Yow K C, Cipolla R. A probabilistic framework for perceptual grouping of features for human face detection. In: Proc Conference on Automatic Face and Gesture Recognition, Killington, Vermont, USA, 1996. 16-21

共引文献353

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部