期刊文献+

α方法在非完整力学系统数值积分中的应用 被引量:1

NUMERICAL INTEGRATION OF NONHOLONOMIC CONSTRAINED MECHANICAL SYSTEMS BY α METHODS
下载PDF
导出
摘要 将源于直接积分方法的广义-α法和α-RATTLE法应用到非完整力学系统动力学方程数值积分中,直接求解指标-2的微分-代数方程(DAEs),这两种方法的质量矩阵可以是常量,也可以与广义坐标相关.最后,文中通过一个非完整力学系统:Snakeboard模型,对这两种方法进行了验证,并且与DASSL算法包的结果进行了比较. The generalized-α nomic constrained mechanical method and α-RATTLE method were used in the numerical integration of nonholo- systems,i, e. numerical solution of index-2 DAEs directly. During the integration, these two α-methods can settle the systems that their mass matrices are related with generalized coordinates. Fi- nally, the two methods were verified by a numerical example, the classical nonholonomic constrained mechanical system: Snakeboard. The results were compared with those obtained by the solver DASSL.
出处 《动力学与控制学报》 2008年第3期193-197,共5页 Journal of Dynamics and Control
基金 国家自然科学基金(60574053) 国家"八六三"高技术研究发展计划(2006AA110105)资助项目~~
关键词 非完整约束 微分-代数方程(DAEs) 广义-α法 α-RATTLE法 nonholonomic constraints, differential-algebraic equations( DAEs), generalized-or method,α-RATTLE method
  • 相关文献

参考文献14

  • 1[3]D F Evensberget.Numerical simulation of nonholonomic dynamics.Master thesis of Norwegian University of Science and Technology,2006
  • 2[4]P J Rabier,W C Rheinboldt.Non-holonomic motion of rigid mechanical systems from a DAE viewpoint.Philadelphia:Society for Industrial and Applied Mathematics,2000
  • 3[5]K B Brenan,S L Campbell,L R Petzold.Numerical Solution of initial-value problems in differential algebraic equations (2nd ed).SIAM,1996
  • 4[8]N Newmark.A method of computation for structural dynamics.Journal of the Engineering Mechanics Division,ASCE,1959:67~94
  • 5[9]T J R Hughes.The finite element method:Linear Static and Dynamic Finite Element Analysis.Prentice-Hall,1987
  • 6[10]Fung Tat Ching.Numerical dissipation in time-step integration algorithms for structural dynamic analysis.Progress in Structural Engineering and Materials,2003,(5):167~180
  • 7[11]A Cardona,M Geradin.Time integration of the equations of motion in mechanism analysis.Computers & Structures,1989,33(3):801~820
  • 8[12]C Lunk,B Simeon.Solving constrained mechanical systems by the family of Newmark and alpha-methods.Zeitschrift für Angewandte Mathematik und Mechanik,2006,86(10):772~784
  • 9[13]L O Jay,D Negrut.Extensions of the HHT-alpha method to differential-algebraic equations in mechanics.Electronic Transactions on Numerical Analysis,2007,26:190~208
  • 10[14]S E Mattsson,G Sderlind.Index reduction in differential-algebraic equations using dummy derivatives.SIAM Journal on Scientific Computing,1993,14(3):677~692

同被引文献11

  • 1潘振宽,赵维加,洪嘉振,刘延柱.多体系统动力学微分/代数方程组数值方法[J].力学进展,1996,26(1):28-40. 被引量:52
  • 2BRENAN K E, CAMPBELL S L, PETZOLD L R. Numerical Solution of Initial-Value Problems in Differential Algebraic Equations [M]. 2nd ed Philadelphia: Society for Industrial and Applied Mathematics, 1996.
  • 3BAUCHAU O A, LAULUSA A. Review of Contemporary Approaches for Constraint Enforcement in Multibody Systems [J]. ASME Journal of Computational and Nonlinear Dynamics, 2008, 3(1) : online.
  • 4NEGRUT D, JAY L O, KHUDE N. A Discussion of Low Order Numerical Integration Formulas for Rigid and Flexible Multibody Dynamics [J]. ASME Journal of Computational and Nonlinear Dynamics, 2009, 4(2)- online.
  • 5LUNK C, SIMEON B. Solving Constrained Mechanical Systems by the Family of Newmark and a Methods [J].Zeitschrift fur Angewandte Mathematik und Mechanik(ZAMM), 2006, 86 (10):772-784.
  • 6JAY L O, NEGRUT D. A Second Order Extension of the Generalized-α Method for Constrained Systems in Mechanics [M]. Multibody Dynamics: Computational Methods and Applications, Bottasso C L, Berlin Heidelberg: Springer-Verlag, 2008, 143-158.
  • 7JAY L O, NEGRUT D. Extensions of the HHT-α Method to Differential-Algebraic Equations in Mechanics[J]. Electronic Transactions on Numerical Analysis (ETNA), 2007, 26: 190-208.
  • 8RABIER P J, RHEINBOLDT W C. Nonholonomic Motion of Rigid Mechanical Systems from a DAE Viewpoint [M]. Philadelphia:Society for Industrial and Applied Mathematics, 2000.
  • 9HII.BER H M, HUGHES T J R, TAYLOR R L. Improved Numerical Dissipation for Time Integration Algorithms in Structural Dynamics [J].Earthquake Engineering and Structural Dynamics, 1977, 5: 283-292.
  • 10BOTTASSO C L, DOPICO D, TRAINELLI L. On the Optimal Scaling of Index Three DAEs in Multibody Dynamics[J].Multibody System Dynamics, 2007, 19(1-2): 3 -20.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部