摘要
A modified solid-state route was attempted to prepare Y0.95 Eu0.05PO4 PDP phosphor, involving milling a powdered mixture of YCl3, EuCl3, and (NH4)2HPO4 and calcining the milling-derived precursor. The thermal decomposition behavior of the milling-derived precursor was investigated by thermogravimetric analysis (TGA). Phase compositions, morphologies, and luminescence properties of the prepared phosphor powder were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), and vacuum ultraviolet (VUV) emission spectra, respectively. The results indicated that the Y0.95Eu0.05PO4 phosphor powder obtained at a calcination temperature of 900℃ was xenotime-structured. The phosphor powder particles were uniform and spherical-shaped with a primary particle size of-200 um. In comparison with that derived by the conventional solid-state route, the phosphor powder prepared by the modified solid-state route exhibited a higher color purity, presenting a predominant emission peak at 619 nm under 147 um VUV excitation.
A modified solid-state route was attempted to prepare Y0.95 Eu0.05PO4 PDP phosphor, involving milling a powdered mixture of YCl3, EuCl3, and (NH4)2HPO4 and calcining the milling-derived precursor. The thermal decomposition behavior of the milling-derived precursor was investigated by thermogravimetric analysis (TGA). Phase compositions, morphologies, and luminescence properties of the prepared phosphor powder were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), and vacuum ultraviolet (VUV) emission spectra, respectively. The results indicated that the Y0.95Eu0.05PO4 phosphor powder obtained at a calcination temperature of 900℃ was xenotime-structured. The phosphor powder particles were uniform and spherical-shaped with a primary particle size of-200 um. In comparison with that derived by the conventional solid-state route, the phosphor powder prepared by the modified solid-state route exhibited a higher color purity, presenting a predominant emission peak at 619 nm under 147 um VUV excitation.
基金
the Natural Science Foundation of Anhui Province, China (No. 2006KJ033B)