摘要
目的:为实验方法鉴定细菌sRNA靶标和研究sRNA功能提供生物信息学支持。方法:首先以实验证实的132个sRNA与靶标相互作用数据为训练集,其中包含46个阳性数据和86个阴性数据;其次,以实验证实的22个阳性数据和随机生成的1 700个阴性数据为测试集;最后以RNA二级结构谱等特征为变量,运用支持向量机(SVM)方法构建sRNA靶标预测数学模型。结果和结论:构建的模型对训练集的敏感性和特异性均为100%,对测试集的敏感性和特异性分别为72.73%和80.65%。所构建的数学模型为实验发现sRNA靶标提供了生物信息学支持。
Objective: To provide bioinformatics support for experimental identification of bacterial sRNA targets and for the study of sRNA functions. Methods: To construct a model for prediction of bacterial sRNA targets, 132 sRNA-mRNA interactions verified by experiments were collected first as the training dataset, which contained 46 positive samples and 86 negative samples. Then, 22 sRNA-mRNA interactions verified by experiments as the positive test dataset and 1700 randomly-generated sRNA-mRNA interactions as the negative test dataset were selected. Finally, support vector machines (SVM) were used to construct the model with the profile of sRNA-mRNA secondary structure as the features. Results and Conclusion :The model's sensitivity and specificity were 100.00% and 100.00% for the training data, and 72.73% and 80.65% for the test dataset, respectively. Therefore, the model provides bioinformatics support for experimental identification of sRNA targets.
出处
《军事医学科学院院刊》
CSCD
北大核心
2008年第4期375-378,共4页
Bulletin of the Academy of Military Medical Sciences
基金
国家"863"高技术项目(2006AA02Z323)
国家自然科学基金项目(30500105
30470411)
关键词
SRNA
靶标
预测
机器学习
SVM
sRNA
target
prediction
machine learning
support vector machines