期刊文献+

基于SVM方法构建细菌sRNA靶标预测模型

Construction of a model for prediction of bacterial sRNA targets using support vector machines
原文传递
导出
摘要 目的:为实验方法鉴定细菌sRNA靶标和研究sRNA功能提供生物信息学支持。方法:首先以实验证实的132个sRNA与靶标相互作用数据为训练集,其中包含46个阳性数据和86个阴性数据;其次,以实验证实的22个阳性数据和随机生成的1 700个阴性数据为测试集;最后以RNA二级结构谱等特征为变量,运用支持向量机(SVM)方法构建sRNA靶标预测数学模型。结果和结论:构建的模型对训练集的敏感性和特异性均为100%,对测试集的敏感性和特异性分别为72.73%和80.65%。所构建的数学模型为实验发现sRNA靶标提供了生物信息学支持。 Objective: To provide bioinformatics support for experimental identification of bacterial sRNA targets and for the study of sRNA functions. Methods: To construct a model for prediction of bacterial sRNA targets, 132 sRNA-mRNA interactions verified by experiments were collected first as the training dataset, which contained 46 positive samples and 86 negative samples. Then, 22 sRNA-mRNA interactions verified by experiments as the positive test dataset and 1700 randomly-generated sRNA-mRNA interactions as the negative test dataset were selected. Finally, support vector machines (SVM) were used to construct the model with the profile of sRNA-mRNA secondary structure as the features. Results and Conclusion :The model's sensitivity and specificity were 100.00% and 100.00% for the training data, and 72.73% and 80.65% for the test dataset, respectively. Therefore, the model provides bioinformatics support for experimental identification of sRNA targets.
出处 《军事医学科学院院刊》 CSCD 北大核心 2008年第4期375-378,共4页 Bulletin of the Academy of Military Medical Sciences
基金 国家"863"高技术项目(2006AA02Z323) 国家自然科学基金项目(30500105 30470411)
关键词 SRNA 靶标 预测 机器学习 SVM sRNA target prediction machine learning support vector machines
  • 相关文献

参考文献19

  • 1Vogel J, Sharma CM. How to find small non-coding RNAs in bacteria [J]. Biol Chem, 2005, 386(12) : 1219 -1238.
  • 2Brennan RG, lank TM. Hfq structure, function and ligand binding[J]. Curr Opin Microbiol, 2007, 10(2) : 125 -133.
  • 3Geissmann TA, Touati D. Hfq, a new chaperoning role: binding to messenger RNA determines access for small RNA regulator[ J]. EMBO J, 2004, 23(2) : 396 -405.
  • 4Brescia CC, Mikulecky PJ, Feig AL, et al. Identification of the Hfq-binding site on DsrA RNA : Hfq binds without altering DsrA secondary structure[J]. RNA, 2003, 9( 1 ) : 33 -43.
  • 5Storz G, Opdyke JA, Zhang A. Controlling rnRNA stability and translation with small, noncoding RNAs[J]. Curr Opin Microbiol, 2004, 7(2): 140-144.
  • 6Masse E, Gottesman S. A small RNA regulates the expression of genes involved in iron metabolism in Escherichia coli [ J ]. Proc Natl Acad Sci USA, 2002, 99 (7) : 4620 -4625.
  • 7Vanderpool CK, Gottesman S. Involvement of a novel transcriptional activator and small RNA in post-transcriptional regulation of the glucose phosphoenolpyruvate phosphotransferase system [ J ].Mol Microbiol, 2004, 54(4): 1076-1089.
  • 8Majdalani N, Cunning C,Sledjeski D, et al. DsrA RNA regulates translation of RpoS message by an anti-antisense mechanism, independent of its action as an antisilencer of transcription[J]. Proc Natl Acad Sci USA, 1998,95 (21) : 12462 - 12467.
  • 9Majdalani N, Hemandez D, Gottesman S. Regulation and mode of action of the second small RNA activator of RpoS translation, RprA[J]. Mol Microbiol, 2002, 46(3): 813 -826.
  • 10Vogel J, Wangner EG. Target identification of small noncoding RNAs in bacteria[ J]. Curr Opin Microbiol, 2007, 10(3 ) :262 - 270.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部