期刊文献+

基于人工神经网络的发动机故障诊断 被引量:1

Application Research of a Artificial Neural Network to Fault Diagnosis of Engine
下载PDF
导出
摘要 提出了一种用RBF网络简化汽车故障诊断仪数据流功能的方法。以RBF网络为识别模型,对电喷发动机的故障进行训练,并应用于待识别故障样本的识别仿真。结果表明:基于RBF的故障诊断方法优于基于BP网络故障诊断,在电喷发动机故障诊断中是行之有效的方法。 A method based on radial basis function neural network was presented, which could simplify data stream of automobile diagnosing instruments. The Radial Basis Function neural network with some fault samples of electronic ejection engine is trained and the neural network model is applied to identify the samples to be identified. The result indicates that the method is better than the fault diagnosis based on BP neural network and efficiency in the fault diagnosis of electronic ejection engine.
出处 《农机化研究》 北大核心 2008年第9期202-205,共4页 Journal of Agricultural Mechanization Research
关键词 发动机 故障诊断 神经网络 电喷发动机 engine fault diagnosis neural network electronic ejection engine
  • 相关文献

参考文献2

  • 1Luce H, Govind R. Neural network pattern recognizer for detection of failure modes in the SSME[ J]. AIAA, 1993,90:22 -26.
  • 2焦李成.神经网络系统理论[M].西安:西安电子科技大学出版社,1996..

共引文献99

同被引文献14

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部