期刊文献+

变时滞非自治神经网络的有界性和全局指数稳定性 被引量:1

Boundedness and Global Exponential Stability for Non-autonomous Neural Networks with Time-varying Delays
下载PDF
导出
摘要 主要研究了一类变时滞的非自治神经网络的一致有界性、最终一致有界性和全局指数稳定性.通过构造恰当的Lyapunov泛函并应用广义泛函微分方程的有界性原理和Young不等式给出了多变时滞非自治神经网络解的有界性和稳定性的新的充分条件.文中无需考查模型平衡点的数目,同时也不要求激活函数可导、单调或是有界,所得结果更具有一般特性和新颖性,改善了相关文献的理论结果.通过举例进一步验证了所得结果的有效性. The uniform boundedness, uniformly ultimate boundedness and global exponential stability for non-autonomous neural networks with time-varying delays are investigated. By constructing a suitable Lyapunov functional and applying the boundedness principle for general functional-differential equations, new sufficient conditions on the boundedness and global exponential stability of the solution for the non-autonomous neural networks with time-varying delays are obtained. Meanwhile, the considered model has not been assumed any equilibrium and the activation functions are not supposed to be differentiable, nondecreasing or bounded. So, the results obtained are more general, new and improving the previous works. An illustrative example is also given to demonstrate the effectiveness of the results.
机构地区 三峡大学理学院
出处 《三峡大学学报(自然科学版)》 CAS 2008年第4期94-98,共5页 Journal of China Three Gorges University:Natural Sciences
基金 国家自然科学基金(600574025) 湖北省教育厅自然科学基金(Q200713001) 湖北省教育厅科研项目(D200613002)
关键词 非自治神经网络 YOUNG不等式 LYAPUNOV泛函 最终有界 全局指数稳定 non-autonomous neural networks Young inequality Lyapunov functional ultimate boundedness global exponential stability
  • 相关文献

参考文献10

  • 1Chua L O, Yang L. Cellular Neural Networks: Theory, IEEE Trans[J]. Circuits Systems, 1988, 35: 1257- 1272.
  • 2蹇继贵.非线性神经网络模型部分变元稳定性研究[J].武汉水利电力大学(宜昌)学报,1997,19(3):25-30. 被引量:1
  • 3孙长银,牛彦杰.关于神经网络的指数稳定性[J].三峡大学学报(自然科学版),2004,26(1):51-56. 被引量:1
  • 4Cao J. New Results Concerning Exponential and Periodic Solutions of Delayed Cellular Neural Networks[J]. Phys. lett. A. 2003, 307:136-147.
  • 5Kolmanovskii V, Myshkii A. Introduction to the Theory and Applications of Functional Differential Equations [M].London: Kluwer Academic Publishers, 1999.
  • 6Burton T A. Stability and Periodic Solutions of Ordinary and Functional Differential Equations[M]. New York: Academic Press, INC, 1985.
  • 7Liang J, Cao J. Boundedness and Stability for Recurrent Neural Networks with Variable Coefficients and Timevarying Delays[J]. Phys. lett. A. 2003, 307:136-147.
  • 8Rehim M, Jiang H, Teng Z. Boundedness and Stability for Nonautonomous Cellular Neural Networks with Delay[J]. Neural Network, 2004, 17:1017-1025.
  • 9Jiang H, Li Z, Teng Z. Boundedness and Stability for Nonautonomous Cellular Neural Networks with Delay[J]. Phys. lett. A. 2003, 306:313-325.
  • 10Jiang M, Shen Y, Liao X. Boundedness and Global Exponential Stability for Generalized Cohen-Grossberg Neural Networks with Variable Delay[J]. Appl. Math. Comput. 2006,172:379-393.

二级参考文献2

同被引文献14

  • 1周林娜,张庆灵,杨春雨.T-S模糊系统的局部稳定[J].控制与决策,2007,22(6):622-625. 被引量:3
  • 2Cao Y Y, Frank P M. Analysis and Synthesis of Nonlinear Time-delay System Via Fuzzy Control Approach [J]. IEEE Transactions on Fuzzy Systems, 2000,8(2): 200-211.
  • 3Guan X P, Chen C L. Delay-dependent Guaranteed Cost Control for T-S Fuzzy Systems with Time Delays[J]. IEEE Transactions on Fuzzy Systems, 2004, 12 (2) : 236- 249.
  • 4Wu H N, Li H X. New Approach to Delay-dependent Stability Analysis and Stabilization for Continuous-time Fuzzy Systems with Time-varying Delay [J]. IEEE Trans. Fuzzy Systems, 2007,15(3) :482-493.
  • 5Lin C, Wang Q G, LeeT H. Delay-dependent LMI Conditions for Stability and Stabilization of T-S Fuzzy Systems with Bounded Time-delay[J]. Fuzzy Sets and Systems, 2006,157 : 1229-1247.
  • 6Lin C, Wang Q G, Lee T H. A Less Conservative Stability Test for Linear Uncertain Time-delay Systems[J]. IEEE Trans. Automat. Control, 2006,51(1) :87-91.
  • 7Tuan H D, Apkarian P, Narikiyo T, et al. Parameterized Linear Matrix Inequality Techniques in Fuzzy Control System Design[J]. IEEE Trans. Fuzzy Systems, 2001,9(2) :324-332.
  • 8Tian E G, Chen P. Delay-dependent Dtability Analysis and Synthesis of Uncertain T-S Fuzzy Systems with Time-varying Delay[J].Fuzzy Sets and Systems,2006, 157(4) ,544-559.
  • 9Yue D, Lain J. Delay Feedback Control of Uncertain Systems with Time-varying Input Delay[J]. Automatica, 2005,41:233-240.
  • 10He Y, Wang Q G, Lin C, et al. Delay-range-dependent Stability for Systems with Time-varying Delay[J]. Automatiea, 2007,43:371-376.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部