摘要
介绍了一种基于神经网络的永磁同步电机矢量控制系统的广义预测控制方法。通过分析永磁同步电机数学模型,采用带有延时结构的多层前向神经网络作为预测模型,进行非线性广义预测控制。控制算法是基于非线性激励函数的局部线性思想,将预测模型处理成线性和非线性两部分,并用线性预测控制方法求得控制律,简化了计算。仿真结果表明,利用该法建立的永磁同步电机调速系统,具有良好的控制效果。
Based on neural network model a generalized predictive control(GPC)approach for the permanent magnet synchronous motor(PMSM)servo system is proposed.By analyzing the math model of the PMSM,the multiplayer feedforward neural network with a time delay structure is adopted as predictive model,and the nonlinear GPC is done.The predictive model is separated into a linear part and nonlinear part by the control algorithm based on the idea of the local linearization of nonlinear activation functions,and the control law is gotten by using simple linear predictive control methods.The counting is simplified.Simulation results show that this system is effective.
出处
《河南科技大学学报(自然科学版)》
CAS
2008年第5期46-49,共4页
Journal of Henan University of Science And Technology:Natural Science
基金
辽宁省教育厅科学研究计划项目(2004D031)
关键词
永磁同步电机
矢量控制
神经网络模型
广义预测控制
Permanent magnet synchronous motor(PMSM)
Servo control
Neural network model
Generalized predictive control(GPC)