期刊文献+

超声对气液鼓泡流中气泡发生频率的作用 被引量:1

The Influence of Ultrasonic on Bubble Formation Frequency in Gas-Liquid Bubble Flow
下载PDF
导出
摘要 在内径160 mm,高300 mm 的玻璃槽中,采用0~200 W 可调功聚能型超声波发生器研究了超声波功率、聚能头与进气管距离、聚能头放置方式、聚能头投入深度、进气流量和反射室直径等因素对气液鼓泡流中气泡发生频率的影响。实验结果表明,聚能头竖直放置时,随着功率的增加,单位时间内气泡数目先减少而后急剧增加;聚能头水平放置时,单位时间内气泡数目随着功率增加而增加;聚能头距分布管越远,超声波对气泡的破碎作用越小,气体流量越大,单位时间内气泡数目越多,反射室直径在一定范围内越小,单位时间内气泡数目越多。 The intensification of bubble formation frequency was studied in a glass vessel of 160 mm in diameter and 300 mm in height with a 0--200 W ultrasonic generator. The Influence factors on the frequency of bubble formation were determined experimentally. The results showed that the frequency of bubble formation decreased firstly and then rose with the increasing ultrasonic power when the focusing probe faced vertically downwards. The frequency of bubble formation increased with the increasing ultrasonic power when the focusing probe was horizontally placed. The longer the distance between the focusing probe and the sparger, the less the bubble formation frequency. Smaller size of reflecting room was favorable to bubble breakage.
出处 《化学反应工程与工艺》 CAS CSCD 北大核心 2008年第3期216-219,共4页 Chemical Reaction Engineering and Technology
基金 国家自然科学基金(20236050 20306028 50574081) 国家"973"重大基础研究发展项目(2004CB619203)
关键词 超声波 气泡 发生频率 气液鼓泡流 ultrasonic bubble formation frequency gas-liquid bubble flow
  • 相关文献

参考文献2

  • 1Ellenberger J, van Baten J M, Krishna R. Exploiting the Bjerknes Force in Bubble Columns. Chem Eng Sci, 2005, 60 (22) : 5962-5970.
  • 2Kumar A, Gogate P R, Pandit A B, et al. Gas-Liquid Mass Transfer Studies in Sonochemical Reactors. Ind Eng Chem Res, 2004, 43 (8). 1812-1819.

同被引文献14

  • 1Karl-Heinz D, Axel R, Guenter P, et al. Methods of Producing Catechol and Hydroquinone. USA, US 5026925. 1991.
  • 2Costantini M, Laucher D. Methods of Hydroxylating Phenol and Phenol Ethers. Eurpat, EP 432006. 1991.
  • 3Simona B, Antonella G, Vittorio R. Preparation of Highly Dispersed CuO Catalysts on Oxide Supports for De-NOx Reactions. Ultrasonics Sonochemistry, 2003, 10 (2) : 61-64.
  • 4Dhas N A, Ekhtiarzadeh A, Suslick K S. Sonochemical Preparation of Supported Hydrodesulfurization Catalysts. Journal of the American Chemical Society, 2001, 123 (34): 8310-8316.
  • 5Jung J , Kim H, Moon S H. Preparation of Highly Loaded, Dispersed MoSJAlaOa Catalysts for the Deep Hydrodesulfurization ofDibenzothiophenes. Applied Catalysis B: Envrionmental, 2003, 41 (1-2): 171-180.
  • 6Nizora S A, VartaPetor M A, Belov P S, et al. Dehydrogenation of trans-l,2-Cyclohexanediol into Pyrocatechol on an Industrial Nickel Kieselguhr Catalyst Modified with Sodium Sulfate. Neftepererab Neftekhim, 1985, (4) : 16-18.
  • 7Bassus J, Lamartine R, Lanteri P, et al. Aromatization of trans-Cyclohexane-1,2-diol to Pyrocatechol. New Journal of Chemistry, 1993, 17 (6): 413-420.
  • 8Graetsch H, Fl6rke O W, Miehe G. Structural Defects in Microcrystalline Silica. Physics and Chemistry of Minerals, 1987, 14 (3): 249-257.
  • 9Kanthale P M, Gogate P R, Pandit A B, et al. Mapping of an Ultrasonic Horn: Link Primary and Secondary Effects of Ultrasound. UltrasonicSonochemistry, 2003, 10(6): 331-335.
  • 10霍超,于凤文,范青明,郑遗凡,刘化章.超声处理对活性炭表面形态及负载催化剂活性的影响[J].化学反应工程与工艺,2007,23(3):263-266. 被引量:10

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部