期刊文献+

积分过程PID控制器参数的新型优化整定方法 被引量:5

New optimal tuning method of PID controller parameters for integrating processes
下载PDF
导出
摘要 针对积分时滞过程,结合菌群优化(BSFO)算法和控制系统优化设计策略,提出了一种新的PID控制器参数优化整定方法.通过将PID控制器的参数设置为群体细菌在参数空间的位置,将时间乘以绝对误差的积分(ITAE)作为细菌对环境的适应度函数,并模拟细菌群体觅食的动态行为来实现对PID控制器参数的寻优.实例仿真结果表明,菌群优化算法能够实现对PID控制器参数的有效整定,并在稳定时间、超调量、鲁棒性和抗干扰性等方面具有满意的综合性能.在大量仿真结果的基础上,给出了一个积分时滞对象的PID控制器参数整定经验公式. For integrator plus time delay processes, a new optimal tuning method of PID controller was proposed by combining the bacterial swarm foraging for optimization (BSFO) and the strategy of control system optimization design. BSFO simulates the social behavior of foraging bacteria, in which the bacteria positions in the parameter spaces are set as the parameters of PID controller, with the index of integral time absolute error (ITAE) being the fitness function of bacteria. Simulation of an integrator plus time delay process showed that the optimal PID controller based on BSFO has satisfying performance of settling time, overshoot, robustness and anti-disturbance capability. Finally, an empirical tuning formula was found by carrying out a large amount of simulation experiments .
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2008年第8期1310-1315,共6页 Journal of Zhejiang University:Engineering Science
基金 国家自然科学基金资助项目(60421002,70471052)
关键词 菌群优化 PID控制器 参数优化 bacterial swarm foraging for optimization (BSFO) PID controller parameter optimization
  • 相关文献

参考文献14

  • 1ZIGELER J G, NICHOLS N B. Optimization setting for automatic controller [J]. Transactions of the American Society of Mechanical Engineers, 1942, 64(11) : 756 - 769.
  • 2张磊.基于单纯形法的PID控制器的最优设计[J].信息与控制,2004,33(3):376-379. 被引量:14
  • 3CHIEN I L, FRUEHAUF P S. Consider IMC tuning to improve performance [J]. Chemieal Engineering Progress, 1990, 86(10): 33-41.
  • 4TYREUS B D, LUYBEN W L. Tuning PI controllers for integrator/dead-time processes [J]. Industrial Engineering Chemistry Research, 1992, 31(11): 2625- 2628.
  • 5CHIDAMBARAM M, PADMA SREE R. A simple method of tuning PID controllers for integrator/deadtime processes [J]. Computers & Chemical Engineering, 2003, 27(2): 211- 215.
  • 6KOOKOS I K, LYGEROS A I, ARVANITIS K G. Online PI controller tuning for integrator/dead time processes [J]. European Journal of Control, 1999, 5(1): 19-31.
  • 7WANG L, CLUETT W R. Tuning PID controllers for integrating processes [J]. lEE Proceedings - Control Theory & Application, 1997, 144(5) : 385 - 392.
  • 8VISIOLI A. Optimal tuning of PID controllers for integral and unstable processes [J]. IEE Proceedings - Control Theory & Application, 2001, 148(2) : 180 - 184.
  • 9HU B G, GEORGE K I, RAYMOND G. New method- ology for analytical and optimal design of fuzzy PID controller. [J]. IEEE Transactions on Fuzzy Systems, 1999, 7(5) : 521 - 538.
  • 10XU J X, HANG C C, LIU C. Parallel structure and tuning of a fuzzy PID controller [J]. Automatica, 2000, 36(5): 673-684.

二级参考文献27

  • 1Holland J H. Adaptation in Nature and Artificial Systems [M]. MIT Press, 1992.
  • 2Dorigo Marco, Maniezzo Vittorio, Colorni Alberto. Ant System: Optimization by a Colony of Cooperating Agents [J]. IEEE Transaction on SMC, Part B, 1996, 26(1): 29-41.
  • 3Muller S D, J Airaghi Marchetto S, Koumoutsakos P. Optimization Based on Bacterial Chemotaxis [J]. IEEE Transaction of Evolutionary Computation, 2002, 6(1): 16-29.
  • 4Bremermann H J. Chemotaxis and Optimization [J]. J Franklin Inst , 1974, 297: 397-404.
  • 5Passino K M. Biomimicry of bacterial foraging for distributed optimization and control [J]. IEEE Control System Magazine, 2002-06. 52-67.
  • 6Reynolds C W. Flocks, herd, schools: a distributed behavioral mode [A]. Proceeding of SIGGRAPH'87, Computer Graphics [C]. Anaheim, California. 1987, 21(4): 25-34.
  • 7Kennedy J, et al. Particle Swarm optimization [A]. Proc. IEEE Int. Conf. on Neural Networks [C]. Perth, WA, Australia, 1995. 1942-1948.
  • 8Clerc M, Kennedy J. The particle swarm-explosion, stability, and convergence in a multidimensional complex space [J]. IEEE Trans. Evolutionary Computation, 2002, 6(1): 58-73.
  • 9Eberhart R C, Shi Y. Comparing inertia weights and constriction factors in particle swarm optimization [A]. Proc. 2000 Congress on Evolutionary Computation [C]. Piscataway, NJ: IEEE Service Center, 2000. 84-88.
  • 10Yarmish G. A Distributed Implementation of the Simplex Method [D]. USA:Polytechnic University, 2001. 17-24.

共引文献110

同被引文献43

引证文献5

二级引证文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部