期刊文献+

基于参数化技术的网格分割 被引量:3

Mesh segmentation based on mesh parameterization techniques
下载PDF
导出
摘要 为了构建曲面分片,对三角网格数据进行分割.传统网格参数化通过求解线性方程组,获取参数化结果后逆映射,然后通过局部参数化调整分片边界.新算法则完全不同.利用全局光顺参数化中的边归类结果,新算法对原网格边进行插点,然后重新三角化并光顺分割片边界.在保有网格特征的优点下,对原网格进行分割,并获取分片的光顺边界曲线.新算法使用参数化的技术和方法,而不是参数化结果,避免了求解线性方程组和复杂的局部参数化调整等方法,克服了方程组病态对算法鲁棒性的影响. A segmentation algorithm was proposed to segment the triangular mesh for constructing high quality surface patches. Traditional mesh parameterization methods solve the linear equation set to get the parameterization results and map the results back to get the segment boundaries. The proposed algorithm takes a different way. The segmentation inserts new vertices into the mesh edges according to the edge classification raised by globally smooth parameterization (GSP). Then the algorithm segments the given mesh into seamless triangular segments and extracts smooth boundary curve-net. The {eatures o{ the mesh are reserved in the process of segmentation. The core of the algorithm is that the parameterization tech- niques are used instead of the parameterization results. Thus the tediousness o{ solving linear equation set and local parameterization for adjusting are avoided, Also, the robustness of the algorithm is enhanced because it avoids solving the possible ill-conditioned linear equation set in previous algorithms.
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2008年第8期1370-1375,共6页 Journal of Zhejiang University:Engineering Science
基金 国家“863”高技术研究发展计划资助项目(2007AA01Z311,2007AA04Z1A5) 国家自然科学基金资助项目(60473106) 博士学科点基金资助项目(20060335114)
关键词 参数化技术 重新三角化 网格分割 parameterization technique re-triangulation mesh segmentation
  • 相关文献

参考文献18

  • 1孙晓鹏,李华.三维网格模型的分割及应用技术综述[J].计算机辅助设计与图形学学报,2005,17(8):1647-1655. 被引量:49
  • 2MANGAN A P, WHITAKER R T. Surface segmentation using morphological watersheds [C]//Proceedings of IEEE Visualization'98. Chapel Hill: IEEE, 1998: 29- 32.
  • 3MANGAN A P, WHITAKER R T. Partitioning 3D surface meshes using watershed segmentation [J]. IEEE Transactions on Visualization and Computer Graphics, 1999, 5(4): 308-321.
  • 4KATZ S, TAL A. Hierarchical mesh decomposition using fuzzy clustering and cuts [J]. ACM Transactions on Graphics, 2003, 22(3): 954-961.
  • 5LEVY B, PETITJEAN S, RAY N, et al. Least squares conformal maps for automatic texture atlas generation [C] // Proceedings of SIGGRAPH 2002. San Antonio, ACM, 2002: 362-371.
  • 6LEE W F, DOBKIN D, SWELDENS W, et al. Multiresolution mesh morphing [C]// Proceedings of SIGGRAPH 1999. Los Angeles: ACM, 1999:343-350.
  • 7KHODAKOVSKY A, SCHRODER P, SWELDENS W. Progressive geometry compression [C] // Proceedings of SIGGRAPH 2000. New Orleans: ACM, 2000: 271 - 278.
  • 8RAY N, VALLET B, LI W, et al. Periodic global parameterization [J]. ACM Transactions on Graphics, 2005, 25(4) : 1460- 1485.
  • 9LEE A, SWELDEN W, SCHRODER P, et al. MAPS: multi-resolution adaptive parameterization of surfaces [C]// Proceedings of SIGGRAPH 1998. Addison Wesley: ACM, 1998: 95-104.
  • 10KHODAKOVSKY A, LITKE N, SCHRODER P. Globally smooth parameterizations with low distortion [J]. ACM Transactions on Graphics, 2003, 22(3) : 350 - 357.

二级参考文献61

  • 1Sebastian T B, Klein P N, Kimia B. Recognition of shapes by editing shock graphs [A]. In: Proceedings of IEEE International Conference on Computer Vision, Vanconver,2001. 755~762.
  • 2Sethian J A. Level Set Methods and Fast Marching Methods:Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science [M].Cambridge: Cambridge University Press, 2000.
  • 3Edelsbrunner H, Letscher D, Zomorodian A. Topological persistence and simplification [A]. In: Proceedings of the 41st Annual Symposium on Foundations of Computer Science,Redondo Beach, California, 2000. 454~463.
  • 4Hoppe H. Progressive meshes [A]. In: Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH,New Orleans, Louisiana, 1996. 99~108.
  • 5Bischoff S, Kobbelt L. Towards robust broadcasting of geometry data [J]. Computers & Graphics, 2002, 26(5): 665~ 675.
  • 6Zuckerberger E, Tal A, Shlafman S. Polyhedral surface decomposition with applications [J ]. Computers & Graphics,2002, 26(5): 733~743.
  • 7Garland M, Willmott A, Heckbert P. Hierarchical face clustering on polygonal surfaces [A]. In: Proceedings of ACM Symposium on Interactive 3D Graphics, Research Triangle Park, North Carolina, 2001. 49~58.
  • 8Praun Emil, Hoppe Hugues, Finkelstein Adam. Robust mesh watermarking [A]. In: Computer Graphics Proceedings,Annual Conference Series, ACM SIGGRAPH, Los Angeles,California, 1999. 49~56.
  • 9Krishnamurthy V, Levoy M. Fitting smooth surfaces to dense polygon meshes [A]. In: Computer Graphics Proceedings,Annual Conference Series, ACM SIGGRAPH, New Orleans,Louisiana, 1996. 313~324.
  • 10Lee W, Sweldens P, Schroder L, et al. MAPS: Multiresolution adaptive parameterization of surfaces [A]. In:Computer Graphics Proceedings, Annual Conference Series,ACM SIGGRAPH, Orlando, Florida, 1998. 95~104.

共引文献48

同被引文献59

引证文献3

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部