摘要
通过利用纽结多项式的基本性质(例如:一些特殊价值的纽结多项式,即Arf变量和纽结多项式的微分)来讨论纽结和5次多项式之间的关系.我们证明了任意一个5次整系数的多项式都不能是纽结的Jones多项式.
In this paper, we deal with some corresponding relations between knots and polynomials with 5 degree by using the basic properties of knot polynomials (such as, some special values of knot polynomials, the Arf invariant and derivative of knot polynomials). We give that a polynomial with 5 degree and integer coefficients is not the Jones polynomial of any knot.
出处
《吉林师范大学学报(自然科学版)》
2008年第3期34-36,57,共4页
Journal of Jilin Normal University:Natural Science Edition
基金
国家自然科学基金项目(10771023)
辽宁省教育厅项目(05L208)