期刊文献+

等式约束广义几何规划的一种优化算法 被引量:1

An Algorithm for Generalized Geometric Programming with Equality Constraints
下载PDF
导出
摘要 本文研究带有等式约束的广义几何规划问题,提出了一个基于增广Lagrange函数的新算法.该算法允许初始点任意,在适当条件下可以避免罚因子趋于无穷,并且该算法全局收敛于原问题的K—T点. This paper studies generalized geometric programming with equality eonstrints, a new algorithm based on the augmented lagrange function is proposed. The algorithm allows initial point is at random, under suitable conditions, the penalty parameter tends to finite and the algorithm is proved to be globally convergent.
出处 《吉林师范大学学报(自然科学版)》 2008年第3期51-53,共3页 Journal of Jilin Normal University:Natural Science Edition
基金 国家自然科学基金项目(10671057)
关键词 广义几何规划 等式约束 LAGRANGE函数 全局收敛 generalized geometric programming equality constrained augmented Lagrangian function global convergence
  • 相关文献

参考文献8

  • 1Duffin. R. Peterson. E and Zener. C. Geometric programming-Theory and Applications[ M ]. Tohn Wiley, New York, 1967.
  • 2Join J. DINKEL and Gary A. KOCHENBERGER.An approach to the numerical solutions of geometric programs[M]. Mathematical Programming, 1974, 7: 181 - 190.
  • 3M. Rather, L. S. Lasdonand A. Jain. Solving geometric programs using GRG: result and comparisons[J].Journal of optimization theory and applications. 1978,26(2) : 12 - 15.
  • 4Powell M.J.D. Some global convergence properties of a variable metric algorithm for minimization without exact line searches[J]. In: Cottle R W and Lemke C E. eds., Nonlinear Programming, Vol. Ⅸ(SIAM publications) 1976,53 - 72.
  • 5Powell M. J. D. Noneonvex minimization ealeulations and the conjugate gradient method[ J]. In: Numerical Analysis, Griffrths D Fed. Dundee, 1983.
  • 6Bertsekas D P. Constrained Optimization and Lagrange Multipliers Methods[ M]. NewYork: Academic Press, 1982.
  • 7Dipillo G. Exact penalty methods[ A]. In: Spedieato E Ed. Algorithm for Continuous Optimization: the state of the Art[ C]. Boston: Kluwer Academic Press,1994,209 - 253.
  • 8Yevtushenko Y G, Zhadan V G. Exact auxiliary function in optimization problems[ J]. USSR Comput Maths and Math Phys, 1930,30(1):31 -42.

同被引文献9

  • 1J. D. Buys. Dual algorithms for constrained optimization. PhD thesis[ M ]. Rijksuniversiteit te Leiden, Leiden, The Netherlands, 1972.
  • 2J. E. Dennis and R. B. Schnabel. Numerical Methods for Unconstrained Optimization and Nonlinear Equations[ M]. Prentice-Hall,Inc. ,Englewoed Cliffs, N J, 1983.
  • 3C. Sagastizabal. Composite proximal bundle method [ J ]. Mathematical Programming. (2012). 10. 1007/s10107-012-0600-5.
  • 4J. Fr6d6ric Bonnans, J. Charles Gilbert, L. Claude, et al. Bundle Methods. The Quest for Descent Numerical Optimization ,2003, Part 1I:150 - 152.
  • 5W. Oliveira,M. Solodov. A Doubly Stabilized Bundle Method For Nonsmooth Convex Optimization[ OL]. www. optimization-online. April 2013.
  • 6方石银.步进电动机起动过程中脉冲频率的优化控制[J].吉林师范大学学报(自然科学版),2008,29(4):35-37. 被引量:4
  • 7费绍金.眼科病床合理安排的优化模型[J].吉林师范大学学报(自然科学版),2011,32(4):85-88. 被引量:6
  • 8武慧虹,钱淑渠,李俊.动态环境优化问题及算法综述[J].吉林师范大学学报(自然科学版),2013,34(2):121-124. 被引量:2
  • 9朱宏.森林救火的优化模型[J].吉林师范大学学报(自然科学版),2004,25(1):96-97. 被引量:9

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部