期刊文献+

一个推广的Lucas型素性测定算法

A Generalized Lucasian Primality Test
下载PDF
导出
摘要 特殊形式的自然数,例如形式为Mh,n=h.2n±1的数(h奇数,n正整数)常是人们感兴趣的研究对象。Berrizbeitia和Berry提出一个Lucass型素性测定测试,即当h mod 5时测试Mh,n的素性所用的种子仅依赖于h。本文推广了Berrizbeitia和Berry关于Mh,n=h.2n±1的素性测定,即将h不能被5整除推广到h不能被形如4m+1的素数q整除时的情形(特别当h能被15整除时)。 Numbers of special form, such as Mh,n = h · 2^n + 1 (h, n positive integers with h odd), are often interested by mathematicians. Berrizbeitia and Berry present a test which allows one to test primality of Mh,n =h · 2^n ± 1 by means of a Lucasian sequence with a seed determined only by h , h absolotely uneqvalto mod 5. We present a primality test of the form Mh,n =h · 2^n= 1 (in particular with h divisible by 15) ,which generalizes Berrizbeitia and Berry's test for such numbers with h ≠ 0 mod 5.
作者 周伟平
出处 《安庆师范学院学报(自然科学版)》 2008年第3期12-14,共3页 Journal of Anqing Teachers College(Natural Science Edition)
关键词 Lucas型素性测定算法 LUCAS序列 四次剩余特征 本原不可约元 Lucasian primality test lucas sequence bi--quadratic residue characters primary irreducibles.
  • 相关文献

参考文献10

  • 1Pedro Berrizeitia and T. G. Berry. Biquadratic Reciprocity and a Lucasian Primality Test [J]. Math. Comp. ,2004(73):1 559--1 564. MR 2047101(2004m:11005).
  • 2W. Bosma. Explicity Primality Criteria for h·2^n±1[J]. Math. Comp. ,1993(61):97-109,s7-s9. MR 1197510(94c:11005).
  • 3Zhenxiang ZHANG. Finding Strong Pseudoprimes to Several Bases[J]. Math. Comp. , 2001 (70) : 863 -- 872, MR1697654 ( 2001g:11009). http://ww.ams. org/journal--getitem? pii=S0025-5718-00-01215-1.
  • 4H. Riesel. Prime Numbers and Computer Methods for Factorization [M]. Birkhauser,Boston, 1985:MR95h: 11142.
  • 5W. Bosma and M. P. van der Hulst. Primality Proving with Cyelotomy[D]. Proefsehrift(Pd. D. Thesis) ,Universiteit van Amsterdam, 1990.
  • 6H. Riesel. Lucasion Criteria for the Primality of N = h·2^n - 1 [J]. Math. Comp. ,1969(23) :869--875 ,MR 41:6773.
  • 7Henri Cohen. A Course in Computational Algebraic Number Theory[M]. 3,corr. print. Graduate Texts in Mathmatics 138,Springer --Verlag,Berlin,1996. MR 94i:11105(1sted).
  • 8D. H. Lehmer. An extended Theory of Lucas's Function[J]. Ann. of Math. 1930,2(31):419--448.
  • 9D. H. Lehmer. On Lueas's test for the Primalitly of Mersenne's Number[J]. J. London Math. Soe. 1935(10):162--165.
  • 10E. Lucas. Theorie des Fonctions Numeriques Simplement Periodiques [J].Ⅰ.Ⅱ,Amer. J. Math. 1978(1):184--239,289--321.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部