期刊文献+

性能优异的稳定子码的设计

Design for Stabilizer Codes with the Best Performance
下载PDF
导出
摘要 根据量子纠错码的性能界限对[[8,3,3]]码的性能进行分析,指出其强大的编码能力及其优异的性能。运用群的理论及稳定子码的基本原理构造了该码的稳定子生成元,计算出了其全部的稳定子并构造出其逻辑算子。在此基础上设计了该编码的基本码字,即编码子空间的一组正交基。 In this paper, we first analyse the performance of [[8,3,3]] code based on capability bound of Quantum Error--Correcting Codes, and point out its powerful encoding capacity and excellent capability. Then the code stabilizer generator is constructed with the help of Group theory and the basic principle of stabilizer codes. After that all of the stabilizers and it's logical operator are also given. Finally, we design the basic code of this encoding, i. e. , a set of orthogonal basis of encoding subspace.
作者 石冰 曹卓良
出处 《安庆师范学院学报(自然科学版)》 2008年第3期71-73,共3页 Journal of Anqing Teachers College(Natural Science Edition)
基金 国家自然科学基金资助项目(60678022) 安徽省自然科学基金资助项目(070412060) 安徽省教育厅重点项目基金资助项目(2006KJ070A)
关键词 稳定子码 生成元 逻辑算子 码字 stabilizer codes generator logical operator codeword
  • 相关文献

参考文献10

  • 1A. R. Calderbank, E. M. Rains, P. W. Shor, and N. J. A. Sloane. Quantum Error Correction and Orthogonal Geometry[J]. Phys. Rev, Lett. ,1997 (78) :405--408,
  • 2A. M. Steane. Simple Quantum Error Correcting Codes[J]. Phys. Rev. ,1996 (A54):4 741.
  • 3Richard Cleve. Quantum Stabilizer Codes and Classical Linear Codes[J]. arXiv: quant-- ph/9612048, 1996 : 20.
  • 4Daniel Gottesman. Stabilizer Codes and Quantum Error Correction[J]. arXiv:quant--ph/9705052v1,1997, 28.
  • 5Daniel Gottesman. A Class of Quantum Error-- Correcting Codes Saturating the Quantum Hamming Bound[J]. Phys. Rev. , 1996 (A54) : 1 862.
  • 6Daniel Gottesman. Fault--Tolerant Quantum Computation with Higher--Dimensional Systems[J]. Chaos Solitons Fractals, 1999 (10):1 749--1 758.
  • 7Daniel Gottesman. Quantum Error Correction and Fault--Tolerance[J]arXiv:quant--ph/0507174.
  • 8Panos Aliferis, Daniel Gottesman, John Preskill. Quantum Accuracy Threshold for Concatenated Distance-- 3 Codes[J]. Quant. Inf. Comput. ,2006 (6) :97--165.
  • 9石冰.■型三能级原子的偶极振幅平方压缩[J].合肥工业大学学报(自然科学版),2006,29(5):627-630. 被引量:2
  • 10Xiao--Hu Zheng, Bing Shi and Zhuo--Liang Cao. The Generation of a Regular Dodecahedron Graph State with a Superconducting Qubit Network [J]. Supercond. Sci. Technol. ,2007 (20) :990 - 993.

二级参考文献8

  • 1Yuen H P.Two-photon coherent states of the radiation field[J].Phys Rev A,1976,13(6):2 226-2 243.
  • 2Wolls D F,Zoller P.Reduced quantum fluctuations in resonance fluorescence[J].Phys Rev Lett,1981,49(10):709-711.
  • 3Ficek Z,Tanas T,Kielich S.Amplitude-squared squeezing in two-atom resonance fluorescence[J].Opt Commun,1988,69(1):20-24.
  • 4Woduiewicz K,Knight P L,Buckle S J,et al.Squeezing and superposition states[J].Phys Rev A,1987,35(6):2 567-2 577.
  • 5Zhou Peng,Peng Jinsheng.Dipole squeezing in the two-photon Jaynes-Cummings model with superposition state preparation[J].Phys Rev A,1991,44:3 331-3 335.
  • 6Einstein A,Podolsky B,Rosen N,et al.Can quantum-mechanical description of physical reality be considered complete[J].Phys Rev,1935,47(10):777-780.
  • 7Schrodinger E.Die gegenwartige situation in der quantenmechanik[J].Naturwissenschaften,1935,23:807-849.
  • 8Sanders B C.The entangled coherent states[J].Phys Rev A,1992,45(9):6 811-6 815.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部