期刊文献+

二次三角形元恢复导数的强超收敛性

The Recovery Derivative Superconvergence for Quadratic Triangular Finite Element
下载PDF
导出
摘要 对椭圆边值问题,利用离散最小二乘恢复技巧和局部对称技巧,对导数进行后处理,证明了二次三角形元在局部对称点上导数存在O(h4)的强超收敛性. For elliptic boundary value problem, a post-process method is proposed by using discrete least-square patch recovery technique and locally symmetric technique, We obtained O(h^4) ultraconvergence for quadraic triangular finite element at locally symmetric points.
出处 《湖南师范大学自然科学学报》 CAS 北大核心 2008年第1期10-13,共4页 Journal of Natural Science of Hunan Normal University
基金 国家自然科学基金资助项目(10671065)
关键词 强超收敛 有限元 局部对称 SPR技巧 ultra-convergence finite element locally symmetric SPR technique
  • 相关文献

参考文献2

二级参考文献11

  • 1Zienkiewicz O C, Zhu J Z. Superconvergence and the superconvergent patch recovery finite element. Anal Design, 1995, 19:11-23
  • 2Zienkiewiz O C, Zhu J Z, Wu J. Superconvergence patch recovery techniques--some further tests.Commun Num Math Meth Erg, 1993, 9:251-258
  • 3Zhang Z M, Zhu J Z. Analysis of the superconvergence patch recovery techniques and a posteriori error estimator in the finite element method (Ⅰ). Comput Methods Appl Mech Engrg, 1995, 123:173-187
  • 4Zhang Z M, Zhu J Z. Analysis of the supencorvergent patch recovery technique and a posteriori errorestimator in the finite element method (Ⅱ). Comput Methods Appl Mech Engrg, 1998, 163:159-170
  • 5Zhang Z M, H D Victorg Jr. Mathematical analysis of Zienkiewicz-Zhu's derivative patch recovery tech-nique. Numer Methods for PDEs, 1996, 12:507-524
  • 6Zhu Q D, Zhao Q H. SPR technique and finite element correction. Numer Math, 2003, 96:185-196
  • 7Zhu Q D. Natural inner superconvergence for the finite element method. In: Feng K, Lions J L, eds.Proceedings of the China-France Symposium on Finite Element Methods. Beijing: Science Press, Gorden and Breach, 1983. 935~960
  • 8Zienkiewicz O C, Zhu J Z. The superconvergence patch recovery and a posteriori estimates. Part 1: The recovery technique. Int J Numer Methods Engrg, 1992, 33:1331-1364
  • 9Zienkiewicz O C, Zhu J Z. The superconvergence patch recovery and a posteriori estimates. Part 2: Error estimates and adaptivity. Int J Numer Methods Engrg, 1992, 33:1365-1382
  • 10Zienkiewicz O C, Zhu J Z. The superconvergence patch recovery (SPR) and adaptive finite element refinement. Comput Methods Appl Mech Engrg, 1992, 101:207-224

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部