期刊文献+

基于改进Sage滤波器的车辆行程时间预测模型 被引量:1

BRT Vehicles Travel Time Prediction Model Based on Improved Sage Filter
下载PDF
导出
摘要 在现代ITS环境中,公交车辆行程时间预测是实现公共交通智能化调度子系统、电子站牌显示子系统及公交信息服务子系统的必要条件。针对Sage滤波器自身的优缺点,提出了一种基于车辆行程时间历史数据流信息的Sage滤波器,并在此基础建立了BRT(Bus Rapid Transit)车辆行程时间预测模型。最后针对2007年6月7日北京市南中轴路大容量快速公交(BRT)线的实际数据进行了对比实验,结果表明,改进的Sage滤波器有效降低了原算法的误差。 In modem ITS environment, vehicles travel time prediction is a necessary condition for the realization of the intelligent public transport scheduling subsystems, station electronic display subsystem and bus information service subsystem. First analyzed Sage filter' s advantages and disadvantages, and presented an improved Sage filter based on the historical data samples of vehicle travel time. Then, on the basis of such algorithm, it built BRT vehicle travel time prediction model. Finally used actual data collected from BRT Transport of South Axis Street in Beijing on June 7, 2007 for experiment. The result shows that the improved Sage filter effectively reduce the error of the original algorithm.
出处 《计算机技术与发展》 2008年第9期162-164,169,共4页 Computer Technology and Development
基金 "十五"国家科技攻关计划(2005BA414B04)
关键词 车辆行程时间预测 Sage滤波器 流聚类 vehicle travel time prediction Sage filter data stream clustering
  • 相关文献

参考文献13

  • 1Ishak S, Ai - Deek H. Performance evaluation of short - term time-series traffic prediction model [J ]. Journal of Transportation Engineering, 2002,128(6) : 490 - 498.
  • 2D' Angelo M P, Al- Deek H M, WANG M C. Travel- time prediction for freeway corridors[ R]. Transportation Research Record 1676. Washington, DC:[s. n. ], 1999: 184- 191.
  • 3Kuchipudi, Mouly C, Chien, et al. Development of a hybrid model for dynamic travel time prediction[ C] //Transportation Research Board, Annual Meeting. Washington DC: [ s. n. ], 2002.
  • 4Lin, Weihua, Amlt, et al. Arterial travel time estimation for advanced traveler infomlation systems[ C]//Proceedings of the 82th Annual Meeting of the Transportation Research Board. Washington D. C., USA:National Academies Press, 2003.
  • 5Robinson, Steve J P. Modeling urban link travel-time using data from inductive loop detectors[ C]//World Conferenee on Transport Research. Istanbul, Turkey: [s. n. ], 2004.
  • 6Bajwa S U I, Chung E, Kuwahara M. A travel time prediction method based on pattern matching technique [ C ]//21 st ARRB and 11th REAAA Conference. Cairns, Australia:[s. n. ], 2003.
  • 7Van Lint W C. Reliable Travel Time Prediction for Freeways [D]. Delft, Netherlands: Delft University Press, 2004.
  • 8杭明升,杨晓光,彭国雄.基于卡尔曼滤波的高速道路行程时间动态预测[J].同济大学学报(自然科学版),2002,30(9):1068-1072. 被引量:26
  • 9崔先强.噪声协方差矩阵加权估计的Sage自适应滤波[J].测绘科学,2002,27(2):26-30. 被引量:13
  • 10曾翠娟,王忠,兰竹,游志胜.GPS动态定位的自适应卡尔曼滤波算法研究[J].导航,2006,42(1):39-49. 被引量:3

二级参考文献30

  • 1卢伯英.最佳滤波[M].北京:国防工业出版社,1983..
  • 2陈茜.城市交通规划中的时间延误函数研究[M].上海:同济大学道路与交通工程系,1998..
  • 3李智.城市道路交通异常事件下的路线导行策略研究[M].上海:同济大学道路与交通工程系,2000..
  • 4Yang Yuanxi,J Geodesy,2001年,75卷,2期,109页
  • 5Hu Congwei,学位论文,1999年
  • 6Hu Guorong,测绘学报,1999年,28卷,4期,290页
  • 7Wang J,Adaptive Kalman Filtering for Integration of GPS with GLONASS and INS,1999年,18页
  • 8Yang Yuanxi,The Basis Theory Comparisons Various Robust Filter Models,1999年,51页
  • 9Koch K R,J Geodesy,1998年,72卷,8期,436页
  • 10Yang Yuanxi,郑州测绘学院学报,1997年,14卷,2期,79页

共引文献262

同被引文献6

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部