期刊文献+

数据挖掘技术及其在旅游线路规划系统的应用 被引量:10

Application of Association Rule in Data Mining for Tour Planning
下载PDF
导出
摘要 研究了旅游线路规划的现状,介绍了在旅游线路规划中使用的方法,引入了关联规则挖掘的基本概念,以及分析了其主要过程。并通过分析关联规则挖掘中的Apriori算法及其改进算法的基础上,提出了一种将Apriori改进算法与旅游线路规划挖掘结合的概念,通过与Apriori算法相比较,提高了系统的效率,并给出了一种典型应用,获得了较理想的应用效果。最后结合当前的旅游网站特点,充分应用网站的信息,设计了一个旅游线路规划的挖掘系统。 Analyses the current situation in route planning, the methods which were used in route planning and the concepts and main process about association rules are introduced, and analyze the process of association rules. And then by analyzing Apriori algorithm and its improvement, a concept was advanced which was based on a new improvement of Apriofi algorithm and tour route planning mining, compared with Apriori algorithm, increased the efficiency of system, it gives out an application in tour route planning mining and acquires good effects. Finally aecording to the actuality of tour web,site, to make full use of the information on the website,proposes a route planning mining system which based on association rules.
出处 《计算机技术与发展》 2008年第9期235-238,共4页 Computer Technology and Development
基金 重庆市自然科学基金项目(CSTC 2007BB2439) 重庆市教委基金项目(0634167)
关键词 数据挖掘 关联规则 APRIORI算法 频繁项集 data mining association rules Apriori algorithm frequent itemset
  • 相关文献

参考文献8

二级参考文献22

  • 1周焕银,张永,蔺鹏.一种不产生候选项挖掘频繁项集的新算法[J].计算机工程与应用,2004,40(15):182-185. 被引量:14
  • 2马盈仓.挖掘关联规则中Apriori算法的改进[J].计算机应用与软件,2004,21(11):82-84. 被引量:24
  • 3(美)希德曼 刘艺译.SQL Serve r2000数据挖掘技术指南[M].北京:清华大学出版社,2000-02..
  • 4范明 孟小峰译.数据挖掘概念与技术[M].北京:机械工业出版社,2002..
  • 5Agrawal R. Mining association rules between sets of items in large databases[A]. In Proc. of ACM SIGMOD conference on management of data[C]. Washington, DC: [s. n. ], 1993. 207-216.
  • 6Rakesh Agrawal, Tomasz Imielinski, Arun Swami. Mining Association Rules between Sets of Items in Large Databases. SIGMOD-93, May 1993: 207~216.
  • 7Rakesh Agrawal, Ramakrishnan Srikant. Fast Algorithms for Mining Association Rules in Large Databases. VLDB1994.
  • 8R S rikant, R Agrawal. Mining Quantitative Association Rules in Large Relational Tables. In Proc. of the 1996ACM SIGMOD Conf. on Management of Data, Montreal,Canada, June 1996.
  • 9Jiawei Han and Yongjian Fu. Discovery of Multiple-Level Association Rules from Large Databases. Proceedings of the 21st VLDB Conference Zurich, Swizerland, 1995.
  • 10A Savasere, E Omiecinski, and S Navathe. An Efficient Algorithm for Mining Association Rules in Large Databases. Proceedings of the 21st International Conference on Very Large Database, 1995.

共引文献74

同被引文献147

引证文献10

二级引证文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部