期刊文献+

一种基于近似类抽样的组合聚类方法 被引量:1

An Combination Clustering Method Based on Sampling Using Approximate Aggregation
下载PDF
导出
摘要 FCM聚类算法具有线性的时间复杂度,但它对初始化非常敏感。而k-中心点轮换法对初始化不太敏感,但其缺点就是时间复杂度较高,不能直接应用到海量数据集的聚类分析中。为克服这两类聚类算法的缺点,而充分利用它们的优点,很自然地提出一种基于近似类抽样的组合聚类算法。这种组合聚类算法的时间复杂度是O(n2m)。仿真实验表明,它具有稳定的聚类结果。 FCM clustering algorithm tins a linear time complexity, but it is sensitive to initialization. The k- medoids substitution clustering method has better clustering effect and less sensitivity to an initialized medoids set than k - means when clustering those sets of data points with some similarsize clusters. But its time complexity is too high, so it can not be used in huge amounts of data sets. In order to solve their shortcomings, a combination clustering method based on sampling using approximate aggregation is presented naturally. This method needs. This combination clustering method can make a stable clustering effect.
作者 陈新泉
机构地区 上饶师范学院
出处 《上饶师范学院学报》 2008年第3期71-75,共5页 Journal of Shangrao Normal University
基金 江西省教育厅资助科研项目(项目编号:GJJ08467)
关键词 FCM聚类算法 近似类抽样 组合聚类算法 FCM clustering method smpling based on approximate aggregation combination clustering method
  • 相关文献

参考文献8

  • 1Vladimir EstivillCastro. Why so many clustering algorithms - A Position Paper. SIGKDD Explorations. 4( 1 ) : 65 - 75.
  • 2Zalfid N., Abouelala O., Limouri M., et al. Fuzzy clustering based on K- nearest- neighbours rule[J]. Fuzzy Sets and Systems, 2001, 120:239 - 247.
  • 3Bezdek J.C. Pattern recognition with fuzzy objective function algorithms[M]. New York: Plenum Press, 1981.
  • 4Xinquan Chen, Hong Peng, Jingsong Hu. k- Medoids Substitution Clustering Method and a New Clustering Validity Index Method[A]. Proceedings of the Sixth World Congress on Intelligent Control and Automation[ C]. 2006, 7 : 5896 - 5900.
  • 5Kryszkiewicz M. Rough set approach to incomplete information system[J]. Information Sciences, 1998, 112: 39- 49.
  • 6Stefanowski J, Tsoukias A. On the Extension of Rough Sets under Incomplete Information[A]. Proceedings of the 7th International Work- shop on New Directions in Rough Sets, Data Mining, and Granular- Soft Computing[C]. Yamaguchi: Physica- Verlag, 1999:73 - 82.
  • 7叶小平,汤庸,周风华,蒋贻铨.广义Rough近似关系基本性质及其计算[J].中山大学学报(自然科学版),2004,43(3):1-4. 被引量:2
  • 8王国胤.Rough集理论在不完备信息系统中的扩充[J].计算机研究与发展,2002,39(10):1238-1243. 被引量:303

二级参考文献2

  • 1PAWLAK Z.Rough set [ J ].International J Information and Computer Sci,1982,11(5):341-356.
  • 2刘清.Rough集及Rough推理[M].北京:科学出版社,2001..

共引文献303

同被引文献9

  • 1柴本成.基于最大方差比的图像二值化算法[J].浙江万里学院学报,2005,18(4):44-46. 被引量:4
  • 2Moh'd B A-Z,Amjad H,Bashar A-S.A fast fuzzy clustering algorithm[C].Corfu Island,Greece:Proceedings of the 6th WSEAS International Conference on Artificial Intelligence,Knowledge Engineering and Data Bases,2007:28-32.
  • 3Lu S J,Tan C L.Binarization of badly illuminated document image through shading estimation and compensation[C].Curitiba,Parana,Brazil:proceedings of the 9th International Conference on Document Analysis and Recognition,2007:312-316.
  • 4Gatos B,pratikakis I,Pratikakis S J.Adaptive degraded document image binarization[J].Pattern Recognition,2006,39(3):317-327.
  • 5Sezgin M,Sankur B.Survey over image thresholding techniques and quantitative performance evaluation[J].Journal of Electronic Imaging,2004,13(1):146-165.
  • 6Kim I J.Multi-Window binarization of camera image for document recognition[C].Tokyo,Japan:preceedings of the 9th International Workshop on Frontiers in Handwriting Recognition,2004:323-327.
  • 7Pan M S,Zhang F,Ling H F.An Image binarizatinn method based on HVS[C].HuNan,China:International Conference on Multimedia & Expo,2007:1283-1286.
  • 8Rhee F C-H.Uncertain fuzzy clustering:in sights and recommendations[J].IEEE Computational Intelligence Magazine,2007,2(1):44-56.
  • 9Yang Y.OCR oriented binarization method of document image[C].Sanya,China:proceedings of the 1st International Congress on Image and Signal Processing,2008:622-625.

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部