期刊文献+

Mean size formula of wavelet subdivision tree on Heisenberg group

Mean size formula of wavelet subdivision tree on Heisenberg group
下载PDF
导出
摘要 The purpose of this paper is to investigate the mean size formula of wavelet packets (wavelet subdivision tree) on Heisenberg group. The formula is given in terms of the p-norm joint spectral radius. The vector refinement equations on Heisenberg group and the subdivision tree on the Heisenberg group are discussed. The mean size formula of wavelet packets can be used to describe the asymptotic behavior of norm of the subdivision tree. The purpose of this paper is to investigate the mean size formula of wavelet packets (wavelet subdivision tree) on Heisenberg group. The formula is given in terms of the p-norm joint spectral radius. The vector refinement equations on Heisenberg group and the subdivision tree on the Heisenberg group are discussed. The mean size formula of wavelet packets can be used to describe the asymptotic behavior of norm of the subdivision tree.
出处 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2008年第3期303-312,共10页 高校应用数学学报(英文版)(B辑)
基金 the National Natural Science Foundation of China (10471123 10771190)
关键词 Heisenberg group wavelet packets subdivision tree joint spectral radius STABILITY Heisenberg group, wavelet packets, subdivision tree, joint spectral radius, stability
  • 相关文献

参考文献3

二级参考文献12

  • 1[1]Liu H. P. and Peng L. Z. Admissible wavelets associated with the Heisenberg group. Pacific J. of Math., 1997, 180: 101-123.
  • 2[2]Yang Q. D. Multiresolution analysis on non-abelian locally compact groups. Ph. D. Thesis, Dept. of Math., Univ. of Saskatchewan,1999.
  • 3[3]Peng L. Z. Wavelets on the Heisenberg group. Geometry and nonlinear partial differential equations. AMS/IP Studies in Advanced Mathematics, 2002, 29: 123-131.
  • 4[4]Bagget L., Carey A., Moran W. et al. General existence theorems for orthonormal wavelets, an abstract approach. Publications of the Research Institute of Mathematical Science, Kyoto University, 1995, 31: 95-111.
  • 5[5]Lawton W., Lee S. L. and Shen Z. W. Convergence of multidimensional cascade algorithm. Numer. Math., 1997, 78 (3):427-438.
  • 6[6]Han B. and Jia R. Q. Multivariate refinement equations and convergence of subdivision schemes. SIAM. J. Math. Anal., 1998,29(5): 1177-1199.
  • 7[7]Lawton W. Infinite convolution products & refinable distributions on Lie groups. Trans. Amer. Math. Soc., 2000, 352: 2913-2936.
  • 8[8]Strang G. Eigenvalue of ( ↓ 2) H and convergence of Cascade algorithm. IEEE Trans. Sign. Proc., 1996, 44: 233-238.
  • 9[9]Strichartz R. S. Self-similarity on nilpotent Lie group. Contem.Math., 1992, 140: 123-157.
  • 10[10]Jia R. Q. Cascade algorithm in wavelet analysis. in: Wavelet analysis: Twenty Year's Developments, (ed. Zhou D. X. ). New Jersey, World Scientific, 2002, 196-230.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部