期刊文献+

智能规划器StepByStep的研究和开发 被引量:9

Research and Development of StepByStep AI Planner
下载PDF
导出
摘要 智能规划器是智能规划研究成果的重要表现形式,规划器的求解效率和规划质量是智能规划理论研究的直接反映.首先介绍智能规划器的一般结构和StepByStep规划器的总体结构,然后详细阐述StepByStep规划器各组成部分所采用的方法和策略,定义谓词知识树来提取领域知识.在谓词知识树的基础上定义谓词规划树,并用各种策略来提高规划树的生成效率.在谓词规划树的基础上设计StepByStep的规划策略,最后用8个规划器对3个具有代表性的基准规划领域及其规划问题进行实际的求解实验,分析了StepByStep规划器在求解效率和规划质量上的具体表现.实验数据表明,StepByStep规划器的规划策略对3个不同规划领域都具有很好的指导作用,验证了领域知识在规划求解过程中的实际价值. AI planner is one of the important representations of AI planning study, the performances of planner, the efficiency and quality of plan, represent the researches of AI planning directly. This paper introduces the architectures of AI planner and StepByStep planner in brief, then describes the methods and strategies adopted by SteByStep in detail, defines the knowledge tree of predicate for extracting domain knowledge. Based on knowledge tree of predicate, the planning tree of predicate is defined and some strategies are applied for constructing the planning tree fast. StepByStep adopts some planning strategies according to the planning trees. Finally, some experiments are taken for eight planners with three representative benchmark domains and their problems, the performances of StepByStep, the efficiency and quality of plan, are analyzed in detail. Experiments show that the strategies of StepByStep controls the process of planning the problems of the three domains well, and validate the guide effect of the domain knowledge in planning process.
出处 《软件学报》 EI CSCD 北大核心 2008年第9期2243-2264,共22页 Journal of Software
基金 国家自然科学基金 中山大学985工程专项资金~~
关键词 人工智能 智能规划 智能规划器 规划领域 知识树 规划树 规划策略 artificial intelligence AI planning AI planner planning domain knowledge tree planning tree planning strategy
  • 相关文献

参考文献1

二级参考文献30

  • 1Fox M,Long D.PDDL 2.1:An extension to PDDL for expressing temporal planning domains.Technical Report.University of Durham,2002.
  • 2Refanidis I,Vlahavas I.GRT:A domain independent heuristic for strips worlds based on greedy regression tables.In:Proc.of the 5th European Conf.on Planning (ECP '99).Durham:Springer-Verlag,1999.346-358.
  • 3GRT.2006.http://macedonia.uom.gr/~yrefanid/GRT/index.html
  • 4Edelkamp S,Helmert M.On the implementation of MIPS.In:Proc.of the Artificial Intelligence Planning and Scheduling (AIPS),Workshop on Decision-Theoretic Planning.2000.18-25.
  • 5Edelkamp S,Helmert M.The model checking integrated planning system.AI-Magazine (AIMAG),2001,67-71.
  • 6Lifschitz V.On the semantics of STRIPS.Reasoning about Actions and Plans,1987,1-9.
  • 7Mcdermott D.PDDL-The planning domain definition language.Technical Report,1998.
  • 8Fox M,Long D.The automatic inference of state invariants in TIM.Journal of AI Research,1998,9:367-421.
  • 9Cresswell S,Fox M,Long D.Extending TIM domain analysis to handle ADL constructs.In:McCluskey L,ed.Proc.of the AIPS 2002 Workshop on Knowledge Engineering Tools and Techniques for A.I.Planning.2002.
  • 10Blum A,Furst M.Fast planning through planning graph analysis.Artificial Intelligence,1997,90:281-300.

共引文献19

同被引文献112

  • 1吴康恒,姜云飞.基于模型检测的领域约束规划[J].软件学报,2004,15(11):1629-1640. 被引量:17
  • 2吴向军,姜云飞,凌应标.基于STRIPS的领域知识提取策略[J].软件学报,2007,18(3):490-504. 被引量:20
  • 3吴向军,姜云飞,凌应标.STRIPS规划领域中动作效果关系的研究[J].软件学报,2007,18(6):1328-1349. 被引量:14
  • 4Roberts M, Howe A. Learning from planner performance [J]. Artificial Intelligence, 2009, 173(5/6): 536-561.
  • 5Helmert M, Roger G. How good is almost perfect [C]//Proc of the 23rd National Conf on Artificial Intelligence (AAAI- 08). Menlo Park: AAAI Press, 2008: 944-949.
  • 6Knoblock C. Automatically generating abstractions for planning [J]. Artificial Intelligence, 1994, 68(2) :243-302.
  • 7Lansky A, Getoor L. Scope and abstraction.. Two criteria for localized planning [C] //Proc of the 14th Int Joint Conf on Artificial Intelligence (IJCAI-95). San Francisco: Morgan Kaufmann, 1995.. 1612-1619.
  • 8Amir E, Engelhardt B. Factored planning [C] //Proc of the 18th Int Joint Conf on Artificial Intelligence(IJCAI-03). San Francisco: Morgan Kaufmann, 2003:929-935.
  • 9Kelareva E, Buffet O, Huang Jinbo, et al. Factored planning using decomposition trees[C] //Proc of the 20th Int Joint Conf on Artificial Intelligence ( IJCAI-07 ). Amsterdam: Elsevier Science, 2007:1942-1947.
  • 10Chen Yixin, Yao Guohui. Completeness and optimality preserving reduction for planning [C] //Proc of the 21st Int Joint Conf on Artificial Intelligenee(IJCAI-09). Amsterdam: Elsevier Science, 2009:1659-1664.

引证文献9

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部