期刊文献+

logistic回归模型中交互作用的分析及评价 被引量:93

Study on the interaction under logistic regression modeling
原文传递
导出
摘要 流行病学病因学研究常运用logistic回归模型分析影响因素的作用,并利用纳入乘积项的方法分析因素间交互作用,如有统计学意义表示两因素间存在相乘交互作用,但乘积项若无统计学意义并不表示两因素间相加交互作用或生物学交互作用的有无。文中介绍Rothman提出的针对logistic或Cox回归模型的三个评价相加交互作用的指标及其可信区间的计算,并以SPSS15.0a件应用实例分析得出logistic回归模型的参数估计值和协方差矩阵,引入Andersson等编制的Excel计算表,计算相加交互作用指标及其可信区间,用于评价因素间的相加交互作用,为研究人员分析生物学交互作用提供依据。该方法方便快捷,且Excel计算表可在线免费下载。 When study on epidemiological causation is carried out, logistic regression has been commonly used to estimate the independent effects of risk factors, as wall as to examine possible interactions among individual risk factor by adding one or more product terms to the regression model. In logistic or Cox' s regression model, the regression coefficient of the product term estimates the interaction on a multiplicative scale while statistical significance indicates the departure from multiplicativity. Rothman argues that when biologic interaction is examined, we need to focus on interaction as departure from additivity rather than departure from multiplicativity. He presents three indices to measure interaction on an additive scale or departure from additivity, using logarithmic models such as logistic or Cox's regression model. In this paper, we use data from a case-control study of female lung cancer in Hong Kong to calculate the regression coefficients and covariance matrix of logistic model in SPSS. We then introduce an Excel spreadsheet set up by Tomas Andersson to calculate the indices of interaction on an additive scale and the corresponding confidence intervals. The results can be used as reference by epidemiologists to assess the biologic interaction between factors. The proposed method is convenient and the Excel spreadsheet is available online for free.
出处 《中华流行病学杂志》 CAS CSCD 北大核心 2008年第9期934-937,共4页 Chinese Journal of Epidemiology
关键词 LOGISTIC回归模型 相加交互作用指标 女性肺癌 Logistic regression model Indices of interaction on an additive scale Female lung cancer
  • 相关文献

参考文献9

  • 1Knol MJ, van Der Tweel I, Grobbee DE, et al. Estimating interaction on an additive scale between continuous determinants in a logistic regression model. Int J Epidemiol, 2007,36 ( 5 ) : 1111-1118.
  • 2Rothman KJ, Greenland S. Modern epidemiology. 2nd eds. Philadelphia: A Wolters Kluwer Company, 1998 : 329-342.
  • 3Rothman KJ. Epidemiology: an introduction. New York: Oxford University Press, 2002:168-180.
  • 4Hosmer DW, Lemeshow S. Confidence interval estimation of interaction. Epidemiology, 1992, 3:452-456.
  • 5向惠云,余松林,孙奕,刘红艳.疾病资料多元分析中交互作用指标及可信区间的估计[J].中国卫生统计,1999,16(3):130-132. 被引量:9
  • 6Andersson T, Alfredsson L, Kallberg H, et al. Calculating measures of biological interaction. Eur J Epidemiol, 2005, 20: 575-579.
  • 7Ahlbom A, Alfredsson L. Interaction: word with two meanings creates confusion. Eur J Epidemiol, 2005,20 : 563-564.
  • 8Gustavsson P, Nyberg F, Pershagen G, et al. Low-dose exposure to asbestos and lung cancer: dose-response relations and interaction with smoking in a population-based ease-referent study in Stockholm, Sweden. Am J Epidemiol, 2002, 155 (11) : 1016- 1022.
  • 9Assmann SF, Hosmer DW, Lemeshow S, et al. Confidence intervals for measures of interaction. Epidemiology, 1996,7:286- 290.

共引文献8

同被引文献942

引证文献93

二级引证文献636

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部