期刊文献+

金属钒弹性波速与热力学函数的理论计算 被引量:2

Theoretical calculation for the elastic wave velocities and thermodynamic functions of vanadium
下载PDF
导出
摘要 在全电子水平上,基于广义梯度近似(GGA)的密度泛函理论和全势能线性缀加平面波方法(FLAPW)计算了钒的晶格参数,弹性波速和格临爱森参数.在德拜模型的基础上,利用弹性波速方法和原子位移方法分别计算了钒的德拜频率,以及在标准条件下(298.15 K,1atm)的热容,熵等热力学函数,并与实验值进行了比较. Based on the generalized gradient approximation (GGA) of density functional theory (DFT) and the full-potential linearized augmented plane wave (FLAPW) at the level including all electrons, the lattice parameters of vanadium are calculated and optimized. The Grüineisen parameter and some elastic wave velocities transmitted in vanadium are deduced. Using the methods of elastic wave velocity method and the atomic displacement method, the Debye frequency of vanadium is obtained. The standard heat capacity, entropy of vanadium is deduced at 298.15 K and 1 atm. The calculated results are discussed and compared with experimental data.
出处 《原子与分子物理学报》 CAS CSCD 北大核心 2008年第4期821-826,共6页 Journal of Atomic and Molecular Physics
关键词 密度泛函 晶体结构 热力学函数 vanadium, DFT, lattice, thermodynamics
  • 相关文献

参考文献12

  • 1陈宁,林勤,叶文,李阳,刘森英.RENi_5电子结构与吸氢性能关系研究[J].科学通报,1995,40(24):2234-2236. 被引量:16
  • 2崔艳华,孟凡明.钒电池储能系统的发展现状及其应用前景[J].电源技术,2005,29(11):776-780. 被引量:51
  • 3Johan R C, Sanden B A. Energy analysis of batteries in photovoltaic systems. Part I: Performance and energy requirements [J]. Energy Convers. Manage., 2005, 46(11-12): 1957.
  • 4Joerissen L, Garche J, Fabian C, et al. Possible use of vanadium redox-flow batteries for energy storage in small grids and stand-alone photovoltaic systems [ J ]. J. Power Sources, 2004, 127(1-2) : 98.
  • 5张华民,赵平,周汉涛,衣宝廉.钒氧化还原液流储能电池[J].能源技术,2005,26(1):23-26. 被引量:35
  • 6Madsen G K H, Blaba P, Schwarz K, et al. Efficient linearization of the augmented plane-plane method [J ]. Phys. Rev. B, 2001, 64:195134.
  • 7Sjostedt E, Nordstrom L, Singh D J. An alternative way of linearizing the augmented plane-wave method [J]. Solid State Commun., 2000, 114(1) : 15.
  • 8Blaha P, Schwarz K, Madsen G K H, et al. An .augmented plane wave plus local orbital program for calcu- lating crystal properties, ISBN 3-9501031-1-2. Vienna Austria: Vienna University of Technology, 2001.
  • 9张三慧.波动与光学[M].北京:清华大学出版社,2002.60
  • 10Liu A Y, Cohen M L. Structural properties and electron structure of low-oompressibility materials- β-Si3N4 and hypothetlcalβC4N4 [J]. Phys. Rev. B, 1990, 41 : 10727.

二级参考文献56

  • 1彭声谦,许国镇,杨华栓,董栋.用从石煤中提取的V_2O_5制备钒电池用VOSO_4的研究[J].无机盐工业,1997,11(1):3-6. 被引量:33
  • 2.[EB/OL].http: //www.vrbpower.com,2004-8-22.
  • 3Tian B, Yan C W, Wang F H. Proton conducting composite membrane from daramic/nafion for vanadium redox flow battery[J]. Journal of Membrane Science,2004,234(1-2):51-54.
  • 4Miyake S. Vanadium redox-flow battery for a variety of applications[J/OL]. http://www.electricitystorage.org/pubs/2001/IEEE_PES_Summer2001/Miyake.pdf,2004-8-22.
  • 5Shibata A, Sato K. Development of vanadium redox flow battery for electricity storage[J]. Power Engineering Journal,1999,13(3):130-135.
  • 6Skyllas-Kazacos M, Kasherman D, Hong D R, et al. Characteristics and performance of 1 kW UNSW vanadium redox battery[J]. Power Sources,1991,35(4):399-404.
  • 7Rydh C J. Environmental assessment of vanadium redox and lead-acid batteries for stationary energy storage[J]. Power Sources,1999,80(1-2):21-29.
  • 8Pellegri A, Spaziante P. Process and accumulator for storing and releasing electrical energy[P]. GB:2030349A, 1978-7-10.
  • 9Skyllas-Kazacos M, Rychcik M, Robins R. All-vanadium redox battery[P]. US: 4786567,1988-11-22.
  • 10Joerissen L, Garche J, Fabjan Ch, et al. Possible use of vanadium redox-flow batteries for energy storage in small grids and stand-alone photovoltaic systems[J]. J Power Sources,2004,127(1-2):98-104.

共引文献97

同被引文献35

  • 1Siegel P H.Terahertz technology[J].IEEE Trans.Microwave Theory.Tech,2002,50:910.
  • 2Liu H C,Song C Y,Luo H,et al.Design of terahertz quantum well photodetectors[J].Appl.Phys.Lett.,2004,84,4068.
  • 3Bradley F,ghang X C.Materials for terahertz science and technology[J].Nature Materials,2002,1:26.
  • 4Arao Y,Tange M,Ikeda H,et al.Optimization of the Bi-2201 superconductors with Pb and La co-doping[J].Physics C,2005,436-431:351.
  • 5Tamura T,Adachi S,Wu X J,et al.115 K superconductivity in the Pb-Sr-Ca-Cu-O system and formation of a new homologous series consisting of Pb-based layered cuprates[J].Physics C,1995,249:111.
  • 6Kohli S,Sachdev V K,Mehra R M,et al.High pressure studies on n-Type Se-In-Pb chalcogenide glasses[J].Phys.Stat.Sol.B,1998,209:389.
  • 7Timmermann H,Gerdes A,Noble S R,et al.The problem of dating high-pressure metamorphism:a U-Pb Isotope and geochemical study on eclogites and related rocks of the mariánské lázn complex,czech republic[J].Journal of Petrology,2004,45:7.
  • 8Kosuge M,Maeda T,Sakuyama K,et al.High-pressure transport phenomena in polycrystalline(Pb(1+x)/2Cu(1-x)/2)Sr2(Y1-xCax)Cu2O7+δ[J].Phys.Rev.B,1992,45:10713.
  • 9Stefano D G.Lattice dynamics of metal from density-functional perturbation theory[J].Phys.Rev.B,1995,51:6773.
  • 10Gonze X,Caracas R,Detraux F,et al.First-principles computation of material properties:the ABINIT software project[J].Comput.Mater.Sci.,2002,25:478.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部