期刊文献+

3-流形沿不可压缩曲面的融合(amalgamation)及性质

The amalgamation of 3-manifolds along incompressible surface and its property
下载PDF
导出
摘要 主要研究了3-流形融合的一些性质,特别是两个3-流形沿不可压缩曲面融合的情形.设FiMi为3-流形Mi中的不可压缩曲面,h:F1→F2为一同胚,M=M1∪hM2.给出了不可压缩曲面Fi满足一定的条件时,两个3-流形M1和M2的融合M有不可压缩的边界.讨论了在两个3-流形M1和M2都不可约的基础上,M也是不可约的.由上述的两个结果,得到了一些相应的推论. Some properties of amalgamation of 3-manifolds are mainly discussed. Particularly, we deal with the case in which two manifolds are amalgamated along incompressible surface. Let Fi belong to δMi be an incompressible surface in 3-manifold Mi,h:F1→F2 a homeomorphism, M = M1 ∪hM2. The amalgamation M of two 3-manifolds M1 and M2 with incompressible boundary is given when incompressible surface Fi satisfies certain conditions. On the basis of the irreduciblities of two 3-manifolds M1 and M2, we discuss that the amalgamation M of them is irreducible. We also obtain some corresponding corollaries for the above two results.
作者 李阳 雷逢春
出处 《辽宁师范大学学报(自然科学版)》 CAS 北大核心 2008年第3期267-269,共3页 Journal of Liaoning Normal University:Natural Science Edition
基金 国家自然科学基金资助项目(10571034)
关键词 3-流形的融合 不可压缩曲面 不可约曲面 柄体 an amalgamation of two 3-manifolds incompressible surface irreducible surface handlebody
  • 相关文献

参考文献1

二级参考文献6

  • 1[1]MENASCO W.Closed incompressible surfaces in alternating knot and link complements[J].Topology, 1984, 23(1):37-41.
  • 2[2]MENASCO W, THISTLETH W M.Surfaces with boundary in alternating knot exteriors[ J].J Reine Angew Maths, 1982,426:47-65.
  • 3[3]MENASCO W.Determining incompressibility of surfaces in alternating knot and link[J].Paci J Math, 1985,117(2) :353-370.
  • 4[4]MENASCO W, THISTLETH W M.Ageometric proof that alternating knots are non-trivial[J].Maths Proc Comb Phil Soci, 1991,109:425-431.
  • 5[5]ADAMS C C, BROCK J F, COMAR T D, et al.Almost alternating links[J] .Topology and its Applications, 1992,46:151-165.
  • 6[6]HAN Y F.Incompressible pairwise incompressible surfaces in almost alternating knot complements[J].Topology and its Applications, 1997,80:239-249.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部