期刊文献+

关于一类自融合三维流形的Heegaard亏格

On a class of Heegaard genuses of self-amalgamated 3-manifolds
下载PDF
导出
摘要 主要研究一个三维流形沿着自身的两个环面分支粘合后所得的三维流形在(关于原流形的Heegaard距离的)一定条件下的Heegaard亏格的非退化问题.设M是一个紧致连通定向的3-流形,T1,T2是M的边界上的两个环面分支,h:T1→T2为一个反向同胚,M′是M通过h粘合T1和T2所得到的定向3-流形.笔者证明了如下结果:如果M有一个Heegaard分解V∪SW,满足T1,T2_V或_W,且D(S)≥2g(M,T1∪T2)+1,则有g(M′)=g(M,T1∪T2)+1. Let M be a compact connected oriented 3-manifold, T1, T2 two torus components of 8M, h: T1→T2 a orientation-reversing homeomorphism,M' is the manifold obtained from M by attaching T1 and T2 via h. The main result of the present paper is as follows: If M has a Heegaard splitting V∪sW such that T1 ,T2 belong to δ_V or δ_W,and D(S)≥2g(M, T1∪ T2)+1, then g(M')=g(M, T1 ∪ T2) +1.
出处 《辽宁师范大学学报(自然科学版)》 CAS 北大核心 2008年第3期281-283,共3页 Journal of Liaoning Normal University:Natural Science Edition
关键词 三维流形自融合 Heegaard亏格 Heegaard距离 self-amalgamation of 3-manifold Heegaard genus Heegaard distance
  • 相关文献

参考文献9

  • 1HEMPEL J. 3-manifolds, Annals of Math. Studies[M]. New Jersey:Princeton University Press,1976,1-60.
  • 2HEMPEL J. 3-manifolds as viewed from the curve complex[J]. Topology, 2001, 40:631-657.
  • 3SCHARLEMANN M. TOMOVA M. Alernate Heegaard genus bounds distance[J]. Geom Topoi, 2006,10:593-617.
  • 4HARSHORN K. Heegaard splittings of Haken manifolds has bounded dlstance[J]. Pacific J Math, 2002,204:61-75.
  • 5MORIMOTO K, Tunnel number, connected sum and meridional essential surfaces[J]. Topology, 2000,39:469-485.
  • 6SCHULTENS J. Additivity of tunnel number for small knots[J]. Comment Math Helv, 2000,75:353-363.
  • 7SCHARLEMANN M. Local detection of strongly irreducible Heegaard splittings[J]. Topology and Its Appli-cations, 1998, 90 135-147.
  • 8YANG Guo-qiu, LEI Feng-chun. On amalgamation of Heegaard splittings with high distance[J]. Proc Amer Math Soc, 已接收, Artide ID:Proc 9642.
  • 9SCHARLEMANN M, THOMPSON A. Heegaard splitting of (surface)X I are standard[J]. Math Ann, 1993,295:549-564.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部