摘要
在复变函数的分析理论中,复积分是研究解析函数的重要工具,解析函数的许多重要性质都要利用复积分来表述和证明的,因此,对复积分及其计算的研究显得尤为重要。文章对复变函数的积分计算方法进行了探讨,重点介绍了利用级数法、拉普拉斯变换法及对数留数与辐角原理进行复积分计算的方法。
In the analysis theory of complex functions, complex integration is an important tool for studying analytic functions of which many key properties have to be expressed and proved by complex integration. Therefore, it is of particularly importance to study complex integration, including the calculation. In this paper, the method of integral calculation of complex functions is discussed, with an emphasis on the introducing of the method of imegral calculation of complex integration by using the method of series, laplace transforms, the theorem of logarithmic residne and argument.
出处
《常州工学院学报》
2008年第4期73-75,共3页
Journal of Changzhou Institute of Technology
关键词
复变函数
复积分
计算方法
complex functions
complex integration
the method of calculation