期刊文献+

移动机器人里程计非系统误差不确定性分析方法 被引量:8

Analysis Approach to Odometric Non-systematic Error Uncertainty for Mobile Robots
下载PDF
导出
摘要 移动机器人里程计非系统误差建模是研究移动机器人定位问题的基础。现有的移动机器人里程计非系统误差建模方法多数针对某一种驱动类型移动机器人设计,运动过程中缺乏对里程计累计误差的实时反馈补偿功能,经过长距离运动过程定位精度大幅度降低。基于此,针对同步驱动和差动驱动轮式移动机器人平台提出一种通用的里程计非系统误差建模方法。在假设机器人运动路径近似弧线基础上,依据里程计误差传播规律推导非系统误差与里程计过程输入量之间的近似函数关系,进而对移动机器人位姿跟踪过程中产生的里程计累计误差给予实时反馈补偿。里程计非系统误差建模前后定位过程的对比试验表明,这种非系统误差实时补偿方法有效地减少了移动机器人导航过程中产生的里程计累计误差,提高了定位精度。 Odometric non-systematic error modeling for mobile robot is the basis for researching the positioning of mobile robot. Most of the approaches to odometric non-systematic error modeling are designed for some special driving-type robot up to now. And the odometric long term errors without bound, which degrade positioning precision after long-distance movement, are not often capable of being compensated in real-time. Therefore, a general approach to odometric non-systematic error modeling for mobile robot is proposed with respect to both synchronous-drive robot and differential-drive robot. The method presents an assumption that the robot path is approximated to circular arcs. The approximate function relationships between the process input of odometry and non-systematic error are derived based on the odometric error transformations rules, further the approach is applied to pose tracking for mobile robots, which is online used to compensate the accumulative errors of odometry in the process of positioning. The contrast experiments before and after odometric non-systematic error modeling denote that the new approach reduces the accumulative error of odometry and improves the positioning precision efficiently.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2008年第8期7-12,共6页 Journal of Mechanical Engineering
基金 国家高技术研究发展计划资助项目(863计划 2006AA04Z259)
关键词 扩展卡尔曼滤波 非系统误差建模 移动机器人定位 位姿估计 Extended Kalman filter Non-systematic error modeling Positioing mobile robot Pose estimation
  • 相关文献

参考文献6

  • 1CHONG K S, KLEEMAN L. Feature-based mapping in real, large scale environments using an ultrasonic array[J]. International Journal Robotics Research, 1999, 18(1):3-19.
  • 2AGOSTINO M. The odometry error of a mobile robot with a synchronous drive system[J]. IEEE Transactions on Robotics and Automation, 2002, 18(3): 350-357.
  • 3AGOSTINO M. Modeling and estimating the odometry error of a mobile robot[C]//Proc. 5th IFAC Symposium. Nonlinear Control Systems(NOLCOS01), July 4-6, 2001, St. Petersburg. Russia, 2001: 420-425.
  • 4JOSE M, JOSE L G, CARLOS A B. A closed-form expression for the uncertainty in odometry position estimate of an autonomous vehicle[J]. IEEE Transctions on Robotics, IEEE 2005, 21(5): 345-401.
  • 5JULIER S J. The stability of covariance inflation methods for SLAM[C]//Proceedings of the 2003 IEEE IROS Conference, October 27-31, 2003, Las Vegas NV, USA. IEEE, 2003:2 749-2 754.
  • 6LI Y, WANG J, RIZOS C, et al. Low-cost tightly coupled GPS/INS integration based on a nonlinear Kalman filtering design[C]//Proceedings of ION National Technical Meeting, January 18-20, 2006, Monterey, California. 2006: 958-966.

同被引文献50

引证文献8

二级引证文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部