期刊文献+

运动副间隙对汽车摆振系统非线性动力学行为影响分析 被引量:14

Influence Analysis of Movement Pair Clearance on Nonlinear Dynamic Behavior of Vehicle Shimmy System
下载PDF
导出
摘要 在前期研究中发现运动副间隙对机构的动力学响应影响显著,因此做出转向系统中的间隙也会对转向摆振系统的响应产生重要影响的推断。为此,将转向梯形机构简化为一个连杆机构,并就机构中运动副间隙对转向系统摆振的影响进行了分析。借助拉格朗日方程建立考虑转向机构运动副间隙的6自由度转向系统摆振动力学模型,基于该摆振模型,应用四阶龙格-库塔法对间隙参数发生变化时摆振系统的响应进行仿真分析。通过仿真分析结果发现:转向机构运动副间隙是诱发转向轮摆振系统混沌运动的重要因素,在摆振系统建模过程中应予以充分考虑;随着运动副间隙增大,转向摆振系统会由周期运动状态经过拟周期运动状态逐渐进入混沌状态,造成摆振运动加剧。相关结论可为转向系统摆振的有效控制奠定理论基础。 Previous research showed that the clearance of the movement pair can considerably influence the dynamic response of the mechanism. As a result, it can be deduced that the clearance of the steering mechanism also can have great influences on the steering wheel shimmy system. Therefore, the steering trapezium is simplified as a linkage mechanism, and the influences of the clearance on the steering wheel shimmy system are discussed. The 6-DOF dynamic model of steering wheel shimmy with consideration of movement pair clearance of steering mechanism is established with Lagrange equations. Based on this model, examples with different clearance of the movement pair are analyzed with 4-order Runge-Kutta method in order to evaluate the effect of the clearance on the dynamic behavior of the vehicle shimmy system. Simul ation results show that the clearance is an important factor in inducing the chaotic motion of the vehicle shimmy system, so it should be considered adequately in the modeling process of shimmy system. With the increase of the clearance, the system experiences the variations from periodic motion, to quasi-periodic motion, and further to chaos state. The correlative conclusions can provide theoretical basis for effective control of the steering wheel shimmy.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2008年第8期169-173,共5页 Journal of Mechanical Engineering
基金 国家自然科学基金(50605017) 安徽省高校青年教师科研资助项目
关键词 间隙 非线性 转向轮摆振 转向机构 Clearance Nonlinear Steering wheel shimmy Steering mechanism
  • 相关文献

参考文献4

  • 1李胜,林逸.汽车转向轮摆振分岔特性的数值分析[J].吉林大学学报(工学版),2005,35(1):7-11. 被引量:6
  • 2顾(jue).考虑转向系间隙的汽车前轮摆振系统研究[D].合肥:合肥工业大学,2007.
  • 3DEMIC M. Analysis of influence of design parameters on steered wheels shimmy of heavy vehicle[J]. Vehicle System Dynamic, 1996, 26 (5): 343-362.
  • 4STEPAN G, GOODWINE B. Feedback linearization of shimmy[J]. Proceedings of the Mini Conference on Vehicle System Dynamic, 1998: 429-436.

二级参考文献9

  • 1林逸,李胜.非独立悬架汽车转向轮自激型摆振的分岔特性分析[J].机械工程学报,2004,40(12):187-191. 被引量:30
  • 2刘秉正.非线性动力学与混沌基础[M].长春:东北师范大学出版社,1995..
  • 3DHOOGE A, GOVAERTS W, KUZNETSOV Yu A. Matcont: a matlab package for numerical bifurcation analysis of ODEs[J]. ACM Transactions on Mathematical Software, 2003,29(2) : 141 - 164.
  • 4GOVAERTS W, BELGIUM F W O, KUZNETSOV Yu A. Implementation of Hopf and double-Hopf continuation using bordering methods[J]. ACM Transactions on Mathematical Software, 1998,24(4) :418-436.
  • 5ZHANG Xiping, LANZ()N Alexander, TSIOTRAS Panagiotis. On robust stability of LTI parameter dependent systems [C]//10th Mediterranean Conference on Control and Automation, Lisbon, Portugal,2002.
  • 6JOHN Gockenheimer, MARK Myers, BERND Sturmfels. Computing Hopf bifurcations I [J].SIAM J NUMER ANAL,1997,34(1):1-21.
  • 7GOVAERTS W, BELGIUM F W O, KUZNETSOV Yu A. Implementation of Hopf and double-Hopf continuation using bordering methods[-]. ACM Transactions on Mathematical Software, 1998,24(4) :418-436.
  • 8ZHANG Xiping, LANZON Alexander, TSIOTRAS Panagiotis. On robust stability of LTI parameter dependent systems [C]// 10th Mediterranean Conference on Control and Automation, Lisbon, Portugal, 2002.
  • 9JOHN Gockenheimer, MARK Myers, BERND Sturmfels. Computing Hopf bifurcations I [J]. SIAM J NUMER ANAL,1997,34(1):1-21.

共引文献5

同被引文献131

引证文献14

二级引证文献68

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部