期刊文献+

基于两级扫描线优化的快速立体匹配算法

Fast Stereo Matching Algorithm Using Two-Pass Scanline Optimization
下载PDF
导出
摘要 通过引入视差梯度理论,提出了一种弱连续性约束,它表示相邻点的视差变化总在一定的范围之内。同时引入了一种两级扫描线优化方法,它从水平和垂直两方向进行扫描线优化。最后把弱连续性约束与两级扫描线优化方法结合起来得到一种快速立体匹配方法。通过对比实验表明,与未加入弱连续性约束的两级扫描线优化算法相比,所提算法计算量更少,同时减轻了同纹理区域的匹配不确定性;与传统一维扫描线优化算法相比,该算法具有更高的匹配准确性并解决了扫描线间的不连续性。 Based on disparity gradient theory, a weak consistency constraint was proposed, which expressed that the disparity difference between neighbor points was always in certain range. Meanwhile, a two-pass scanline optimization method was present, which processed optimization along and across the scanlines. At last, the weak consistency constraint and the two-pass scanline optimization were combined in a fast stereo matching algorithm. The experiment results indicate that the proposed algorithm has less computational cost than the two-pass scanline optimization algorithm without weak consistency constraint, and lessens the matching ambiguities in the similar textured regions. The algorithm is more accurate than the conventional single-pass scanline optimization algorithm and resolves inconsistency between scanlines.
出处 《系统仿真学报》 EI CAS CSCD 北大核心 2008年第17期4525-4528,4536,共5页 Journal of System Simulation
基金 国家863计划资助项目(2006AA042238)
关键词 立体匹配 视差梯度 弱连续性约束 两级扫描线优化 stereo matching disparity gradient weak consistency constraint two-pass scanline optimization
  • 相关文献

参考文献10

  • 1Scharstein D, Szeliski R. A Taxonomy and Evaluation of Dense Two-Frame Stereo Correspondence Algorithm [J]. International Journal of Computer Vision (S0920-5691), 2002, 47(1/3): 7-42.
  • 2Leung S C, Appleton B, Sun C. Fast Stereo Matching by Iterated Dynamic Programming and Quadtree Subregioning [C]// Proceedings of the Conference on British Machine Vision. London: BMVA Press, 2004: 97-106.
  • 3Kim C, Lee K M, Choi B T, et al. A Dense Stereo Matching Using Two-Pass Dynamic Programming with Generalized Ground Control Points [C]// Proceedings of the Conference on Computer Vision and Pattern Recognition. San Diego: IEEE Press, 2005: 1075-1082.
  • 4Forstmann S, Kanou Y, Ohya .J, et al.;Real-Time Stereo by Using Dynamic Programming [C]// Proceedings of the Cgnference on Computer Vision and Pattern Recognition Workshop. Washington: IEEE Press, 2004: 29-36.
  • 5Pollard S B, Mayhcw J E W, Frisby J P. PMF: A Stereo Correspondence Algorithm Using Disparity Gradient Limit [J]. Perception, 1985, 14 (4): 449-470.
  • 6Pollard S B, Porrill J, Mayhcw J E W, et al. Disparity Gradient, Lipschitz Continuity and Computing Binocular Correspondance [C]// Proceedings of the 3rd International Symposium on Robotics Rcscerch. France: ISRRPress, 1986: 19-26.
  • 7Li Z, Hu G Analysis of Disparity Gradient Based Cooperative Stereo [J]. IEEE Transactions on Image Processing (S1057-7149), 1996, 5(11): 1493-1506.
  • 8Moallem P, Faez K. Seareh Space Reduction in the Edge Based Stereo Correspondence [C]// Proceedings of the Conference on Vision Modeling and Visualization. Stuttgart: VMV Press, 2001: 423-430.
  • 9Birchfield S, Tomasi C. Depth Discontinuities by Pixel-to-Pixel Stereo [C]// Proceedings of the International Conference on Computer Vision. Bombay: IEEE Press, 1998: 1073-1080.
  • 10Bobick A F, Sintille S. Large Occlusion Stereo [J]. International Journal of Computer Vision (S0920-5691), 1999, 33(3): 181-200.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部