期刊文献+

非线性Klein-Gordon系统生命跨度的上界估计

Super Bound Estimate of Lifespan for a Nonlinear Klein-Gordon System
下载PDF
导出
摘要 考虑如下非线性Klein-Gordon系统初边值问题解的生命跨度:utt-Δu+α2u+λuv2=0,vtt-Δu+β2v+λu2v=0(x,t)∈Ω×[0,T),这里,Ω是R3中具有光滑边界的有界域,α,β为非零实数,λ<0,T>0.得到了其解的生命跨度的上界估计,且当能量为正时得到了一个新的能量上界. Considered the lifespan of the solution for the following nonlinear Klein-Gordon system with the initial-boundary value: {utt-Δu+α2u+λuv2=0, vtt-Δu+β2v+λu2v=0 (x,t)∈Ω×[0,T), where Ω is a bounded field in R^3 with sufficiently smooth boundary δΩ, and α,β are non-zero real numbers, λ〈0, T〉0. Some estimates for the lifespan of the solution are obtained. And a new upper bound is put forward when the initial energy is positive.
出处 《大学数学》 北大核心 2008年第4期44-48,共5页 College Mathematics
基金 湖南省自然科学基金(05jj40008) 衡阳师范学院科研项目(2004D12)
关键词 生命跨度 能量函数 非线性 Klein-Gordon系统 lifespan energy function nonlinear Klein-Gordon system
  • 相关文献

参考文献7

  • 1Segal I. Nonlinear partial differential equations in quantum field theory[J]. Proc. Symp. Appl. Math. A. M. S. 1965,17:210-226.
  • 2Jorgens K. Nonlinear wave equation[M]. New York: University of Colorado, Department of Mathematics, 1970.
  • 3Klainerman S. Global existence for nonlinear wave equations[J]. Comm. Pure Appl. Math. 1980,33:43-101.
  • 4Segal I. Nonlinear semigroups[J]. Ann. Math. 1963.78(2):339-364.
  • 5Li M R. Estimates for the lifespan of the solution for semi-linear wave equations[A]. Hsinchu. Proceedings of the workshop on differential equations(Ⅴ) [C]. Tsinhua Univ. , Beijing, 1997 : 129- 137.
  • 6Sideris T C. A decay estimate for the three-dimensional inhomogeneous Klein-Gordon equation and global existence for nonlinear equation[M]. Microcal Analysis Nonlinear Wave. New York: Spring Verlay, 1991.
  • 7张宏伟,呼青英.一类耦合非线性Klein-Gordon方程组解的稳定集和不稳定集[J].纯粹数学与应用数学,2002,18(3):207-210. 被引量:12

二级参考文献6

  • 1Segal L. Nonlinear partial differential equations in quantum field theory[J]. Proc. Symp. Appl. Math.A. M.S. 1965,17:210~226.
  • 2Jorgens K. Nonlinear Wave Equations [M]. University of Colorado, Department of Mathematics,1970.
  • 3Makhankov V. Dynamics of classical solutions in integrable systems [J]. Physics Reports, Sect C,1978,35:1~128.
  • 4Miranda M Milla Medeiros L A. On the existence of global solutions of a coupled nonlinear KleinGordon Equations [J]. Funkc. Ekvac. 1987,30:147~161.
  • 5Sattinger D H. On global solutions of nonlinear hyperbolic equaions [J]. Arch. Rational Mech. Anal.1968,30:148~172.
  • 6Tsutsumi M. On solutions of semilinear differential equations in a Hilbert space[J]. Math. Japon.1972,17:173~193.

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部