摘要
通过引入带参数的指数积分并利用Bernoulli不等式以及改进了的Hlder不等式,对Hardy-Hilbert积分不等式作了有意义改进.特别,当p=2时,得到了经典的Hilbert积分不等式的一个很强的结果.
It is shown that a significant refinement of Hardy-Hilbert's integral inequality can be built by introducing exponential integral with parameter t and by using Bernoulli's inequality as well as improved Holder's inequality, In particular, for case p= 2, a sharp result of the classical Hilbert inequality is obtained.
出处
《大学数学》
北大核心
2008年第4期117-121,共5页
College Mathematics