期刊文献+

Hardy-Hilbert积分不等式的改进

A Refinement of Hardy-Hilbert's Integral Inequality
下载PDF
导出
摘要 通过引入带参数的指数积分并利用Bernoulli不等式以及改进了的Hlder不等式,对Hardy-Hilbert积分不等式作了有意义改进.特别,当p=2时,得到了经典的Hilbert积分不等式的一个很强的结果. It is shown that a significant refinement of Hardy-Hilbert's integral inequality can be built by introducing exponential integral with parameter t and by using Bernoulli's inequality as well as improved Holder's inequality, In particular, for case p= 2, a sharp result of the classical Hilbert inequality is obtained.
出处 《大学数学》 北大核心 2008年第4期117-121,共5页 College Mathematics
关键词 HARDY-HILBERT积分不等式 BERNOULLI不等式 指数积分 HOLDER不等式 权系数 Hardy-Hilbert's inequality Bernoulli's inequality exponential integral Holder's inequality weight coefficient
  • 相关文献

参考文献4

  • 1Hardy G H, Littlewood J E, Polya G. Inequalities[M]. Cambridge: Cambridge Univ Press, 1952.
  • 2Mintrinovic D S, Pecaric J E, Fink A M. Inequalities involving functions and their integrals and derivatives[M]. Boston: Kluwer Academic Pubishers, 1991.
  • 3Gao Mingzhe. On the Hilbert inequality[J]. Zeitsehrift fur analysis und ihre anwendungen 1999, 18 (4): 1117-1122.
  • 4Gao Mingzhe. On Hilbert's inequality and its applications[J], Math. Anal. Appl. , 1997, 212(1) ;316-327.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部