摘要
Kohonen自组织特征映射可实现高维模式空间到低维拓扑结构的映射,借此可进行模式聚类分析及高维数据的二维可视化。但当输入样本数目较多、复杂度较大时,采用KSOM将使相邻类簇间发生大面积重叠,降低聚类效果。本文通过利用涌现自组织特征映射神经网络对数据进行聚类分析,并通过无边界U矩阵实现可视化功能。测试结果表明,借助ESOM模型进行数据的聚类分析与可视化在诸多方面表现出优越的性能。
Kohonen Self-Organizing Maps (KSOM) can implement a mapping from high-dimensional pattern space to low-dimensional topological structure. With the number of sampling data increasing and their complexity enhancing, the adjacent clusters of KSOM may be overlap in a common region. This can reduce the effect of data clustering and visualization. To facilitate clustering analysis and visualization of data, the Emergent Self-Organizing Feature Maps (ESOM) and a boundless U-matrix are needed. It is proved that ESOM model is feasible and effective for high-dimensional data clustering and visualization processing.
出处
《微计算机信息》
北大核心
2008年第27期257-259,共3页
Control & Automation
基金
国家自然科学基金委
项目名称:油藏模拟的混合软计算系统理论与实用方法研究(40572082)基金申请人:程国建
关键词
涌现自组织特征映射
聚类
U矩阵
Emergent Self-Organizing Feature Maps
Clustering
U-Matrix