期刊文献+

基于涌现自组织映射的聚类分析与可视化处理 被引量:1

Data Clustering and Visualization based on Emergent Self-Organizing Feature Maps
下载PDF
导出
摘要 Kohonen自组织特征映射可实现高维模式空间到低维拓扑结构的映射,借此可进行模式聚类分析及高维数据的二维可视化。但当输入样本数目较多、复杂度较大时,采用KSOM将使相邻类簇间发生大面积重叠,降低聚类效果。本文通过利用涌现自组织特征映射神经网络对数据进行聚类分析,并通过无边界U矩阵实现可视化功能。测试结果表明,借助ESOM模型进行数据的聚类分析与可视化在诸多方面表现出优越的性能。 Kohonen Self-Organizing Maps (KSOM) can implement a mapping from high-dimensional pattern space to low-dimensional topological structure. With the number of sampling data increasing and their complexity enhancing, the adjacent clusters of KSOM may be overlap in a common region. This can reduce the effect of data clustering and visualization. To facilitate clustering analysis and visualization of data, the Emergent Self-Organizing Feature Maps (ESOM) and a boundless U-matrix are needed. It is proved that ESOM model is feasible and effective for high-dimensional data clustering and visualization processing.
出处 《微计算机信息》 北大核心 2008年第27期257-259,共3页 Control & Automation
基金 国家自然科学基金委 项目名称:油藏模拟的混合软计算系统理论与实用方法研究(40572082)基金申请人:程国建
关键词 涌现自组织特征映射 聚类 U矩阵 Emergent Self-Organizing Feature Maps Clustering U-Matrix
  • 相关文献

参考文献5

  • 1ULTSCH A. Data Mining and Knowledge Discovery with Emergent Self-Organizing Feature Maps for Multivariate Time Series[J]. Kohonen Maps, 1999.
  • 2KOLEHMAINEN, MIKikko T. Data exploration with self-organizing maps in environmental informatics and bioinformatics [J]. Kuopio University Publications C. Natural and Environmental Sciences, 2004, 167:33-41.
  • 3陈良维.数据挖掘中聚类算法研究[J].微计算机信息,2006(07X):209-211. 被引量:32
  • 4ULTSCH A. Maps for the Visualization of high dimensional Data Spaces [C]. Japan: Proc. Workshop on Self organizing Maps, 2003: 225 -230.
  • 5UCI repository of machine learning database [DB/OL].http:// archive.ics.uci.edu/ml/datasets/Iris.

二级参考文献8

  • 1荆丰伟,刘冀伟,王淑盛.改进的K-均值算法在岩相识别中的应用[J].微计算机信息,2004,20(7):41-42. 被引量:5
  • 2韩家炜 Michelin K.数据挖掘:概念与技术[M].北京:机械工业出版社,2001..
  • 3A. K. J ain , R. C. Dubes. Algorithm for Clustering Data[C].Prentice Hall, 19881
  • 4Kanungo T, Mount DM, Netanyahu NS. An efficient k-menas clustering algorithm: analysis and implementation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002,24(7):881-892.
  • 5Kohonen T. The Self-Organizing Maps[J]. Proceedings of the IEEE, 1990,78(9):1464-1480.
  • 6Kohonen T. Self organization of a massive document collection[EB/OL].http://lib.hut.fgDiss/2000/isbn95122.52600/articl -e7.pdf,2000.
  • 7王实,高文,李锦涛.Web数据挖掘[J].计算机科学,2000,27(4):28-31. 被引量:120
  • 8汤效琴,戴汝源.数据挖掘中聚类分析的技术方法[J].微计算机信息,2003,19(1):3-4. 被引量:87

共引文献31

同被引文献6

  • 1马光志,杨春.利用U矩阵对SOM网络的处理[J].计算机工程与设计,2006,27(4):654-655. 被引量:6
  • 2ULTSCH A. Data Mining and Knowledge Discovery with Emergent Self-Organizing Feature Maps for Multivariate Time Series [ C ]//Kohonen Maps. [ s.l. ] : Elsevier science B V,1999:33-46.
  • 3Nocker M, Morchen F, Ultsch A. An algorithm for fast and reliable ESOM learning [ C]//European Symposium on Articial Neural Network. Bruges ( Belgium ) : [ s. n. ], 2006 : 26 -28.
  • 4ULTSCH A. Maps for the Visualization of high dimensional Data Spaces [ C ]//Proc. Workshop on Self organizing Maps ,Japan : [ s. n. ] ,2003:225-230.
  • 5ULTSCH A. Pareto Density Estimation: Probability Density Estimation for Knowledge Discovery [ C ]. Proc GfKI 2003, Cottbus, Germany,2003.
  • 6帕累托.80/20法则[EB/OL].2009-3-20.http://baike.baidu.com/view/397417.htm.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部