期刊文献+

基于双阈值的运动目标检测

The detection of moving object based on double-threshold
下载PDF
导出
摘要 目前在运动目标实时检测中,主要是运用差分法进行检测。但背景差分受光照、环境影响较大,需要实时更新背景,而帧间差分容易出现空洞和误检。结合背景差分和帧间差分,采用双阈值对运动目标进行分割,能对背景进行实时更新,有效的避免了空洞和误检,并且在机场的运动目标检测中取得了较好的效果。 At the present time the general method of the detection of moving object is based on subtraction.Since the background subtraction is great affected by the illumination and environment the background needs be updated.The cavity cavitation and false detectione asily appear in inter-frame subtraction.So we update the background by combining the background subtraction with the interframe subtraction and segment the moving object by 2 threshold.We acquired the good effect in practicality.
出处 《微计算机信息》 北大核心 2008年第27期283-284,282,共3页 Control & Automation
基金 国家"863"计划基金项目(2006AA12A104)
关键词 运动检测 图像分割 背景更新 背景差分 帧间差分 motion detection image segmentation background updating background subtraction inter-frame subtraction
  • 相关文献

参考文献9

  • 1R. Cucchiara, C.Grana, M. Piccardi. Statistic and knowledge- based moving object detection in traffic scenes,Proc, of ITSC2000- The 3rd Annual IEEE Conference on Intelligent Transportation Systems, 2000.27-32.
  • 2B.D.Lucas. An iterative image registration technique with an application to stereo vision, Proc.DARPA Image Understanding Workshop, 1997, 121 - 130.
  • 3A.Neri, S.Colonnese, GRusso&P.Talone. Automatic moving object and background separation,Signal Processing,1998, Vol.66, No.2,219 - 232.
  • 4T.Aach, A.Kaup, R.Mester. Statistical model-based change detection in moving video. SignalProcessing, 1993, Vo 1.31, N0.2:165 -- 180.
  • 5Liyuan Li, Leung M.K.H. Integrating intensity and texture differences for robust change detection.IEEE Trans. On Image processing, 2002, Vol.11, N0.2:105 - 112.
  • 6张晖,王东辉.RFID技术及其应用的研究[J].微计算机信息,2007,23(04Z):252-254. 被引量:108
  • 7McFarlane N and Schofield C. Segmentation and tracking of piglets in images[J], Machine Vision and Applications 8(3), 1995, 187-193.
  • 8M. Kim, J.G.Choi, D.Kim, M.H.Lee, C.Ahn and Y.S.Ho.A VOP Generation Tool: Automatic Segmentation of Moving Objects in Image Sequences Based on Spatio-Temporal Information. IEEE Trans. on Circuits and Systems for Video Technology, 1999, 9(8):1216- 1226.
  • 9A. Elgammal, R. Duraiswami, D. Harwood, and L. Davis. Background and foreground modeling using nonparametric kernel density estimation for visual surveillance. Proceedings of the IEEE, 2002,90:1151 ┝1163.

二级参考文献7

  • 1余雷.基于RFID电子标签的物联网物流管理系统[J].微计算机信息,2006(01Z):233-235. 被引量:113
  • 2S.L.Garfinkel,A.Juels,R.Pappu.RFID Privacy:An overview of problems and proposed solutions[J].IEEE Security & Privacy Magazine vol.3.PP.34-44.
  • 3Klaus FinkenzeUer RFID Handbook:Radio-frequency identification fundamentals and applications in contactless smaa cards and identification[M].in:2th Edition,2003.
  • 4RFID标签天线及读写器设计制造.http://www.rfidwodd.com.cn/tech/200512282293662 9.htm
  • 5Jihoon Myung,Wonjun Lee and?Srivastava J.,?Adaptive binary splitting for efficient RFID tag anti-collision[J].IEEE communication letters,vol.10,pp.144-146,March 2006.
  • 6Junius Ho,Engels D.W.and Sarma,S.E.,HiQ:A hierarchical Q-learning algorithm to solve the leader collision problem[C].in Applications and the Intemet Workshops 2006,PP.88-91,Jan,23-27.2006.
  • 7http://www.gdeii.com.cn/Technique/Technique7.jsp

共引文献107

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部