期刊文献+

基于Parzen核估计的动态背景建模算法

An Method for Dynamic Scene Modeling Based on Parzen Kernel Estimator
下载PDF
导出
摘要 利用非参数估计理论核密度估计方法,研究了多模态场景参考帧的动态维护与更新问题。针对户外伴有树木晃动、水波荡漾等问题的复杂环境,在利用Parzen核估计算法进行动态背景建模的基础上,对该算法进行改进。首先,在运动前景检测阶段,给出了一种改进的阈值设定算法,提高了像素点分类的准确性。其次,在去除噪声阶段,利用像素邻域相关性,降低了目标检测的虚警率。实验结果表明:该算法可更有效地对运动目标进行检测,并具有较强的实时性。 A kernel density estimation (KDE) based on a muhimodal model is presented for dynamic scene reference frame maintenance and update problems. Aim at complex outdoor environment with small movements, such as tree branches moving with the wind or rippling water, an improved method based on Parzen kernel estimator is proposed for dynamic scene modeling. Firstly, in moving foreground detection, an improved threshold setting method is presented that can distribute pixels more accurately. Secondly, in noise removing, Pixel's neighbor information is considered to decreases the false positive in object detection. The experimental results indicate that the proposed approach in this paper can process in real-time and detect moving targets more effectively.
出处 《微计算机信息》 北大核心 2008年第27期295-296,20,共3页 Control & Automation
基金 国家863计划(编号不公开)
关键词 背景建模 核密度估计 背景更新 运动目标检测 background modeling Kernel density Estimation background update moving object detection
  • 相关文献

参考文献10

  • 1Elgammal A, Duraiswami R, Harwood D, Davis L. Background and foreground modeling using nonparametric kernel density estimation for visual surveillance. Proceedings of the IEEE, VOL. 90, NO. 7, JULY, 2002.
  • 2Elgammal Ahmed, Harwood David, Davis Larry. Non-parametric Model for Background Subtraction[J]. 6th European Conference on Computer Vision, Dublin, 2000.
  • 3Codrut Ianasi, Vasile Gui, Corneliu I. Toma, Dan Pescarn. A Fast Algorithm for Background Tracking in Video Surveillance, Using Nonparametric Kernel Density Estimation. FACTA UNIVERSITATIS SER.:ELEC. ENERG. VOL18, NO l, April 2005,127-144.
  • 4Friedman N, Russell S. Image segmentation in video sequences: A probabilistic approach. Proc. Thirteenth Conf. on Uncertainty in Artificial Intelligence(UAI97).
  • 5Lee Dar-Shyang. Effective Gaussian Mixture Learning for Video Background Subtraction. IEEE Transactions on Pattern Analysis And Machine Intelligence, VOL. 27, NO. 5, MAY 2005.
  • 6Hanzi wang, David Suter. A Re-evaluation of Mixture of Gaussian Background Modeling. ICASSP 2005.
  • 7王亮生,程荫杭.一种改进的基于混合高斯分布模型的自适应背景消除算法[J].北方交通大学学报,2003,27(6):22-25. 被引量:19
  • 8杨俊红,张强,周兵.视频序列中的运动目标检测[J].微计算机信息,2007,23(19):226-227. 被引量:19
  • 9毛燕芬,施鹏飞.一种核密度估计动态场景建模算法[J].数据采集与处理,2004,19(4):391-394. 被引量:5
  • 10毛燕芬,施鹏飞.高斯核密度估计背景建模及噪声与阴影抑制[J].系统仿真学报,2005,17(5):1182-1184. 被引量:10

二级参考文献27

  • 1危水根,陈震,黎明.一种基于时间差分运动检测的改进方法[J].南昌航空工业学院学报,2005,19(3):15-19. 被引量:6
  • 2[1]Huwer S, Niemann H. Adaptive Change Detection for Real-time Surveillance Applications[A].Proceedings. 3rd IEEE International Workshop on Visual Surveillance[C]. 2000. 37-46.
  • 3[2]Wern C R, Azarbaycjani A, Darrell T, et al. Pfinder: Real-time Tracking of Human Body[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997,19: 780-785.
  • 4[3]Stauffer C, Grimson W E L. Adaptive Background Mixture Models for real-time Tracking[J]. IEEE Conf, on CVPR. 1999,2:246-252.
  • 5[4]Elgammal A, Harwood D, Davis L. Non-parametric Model for Background Subtraction[EB/OL]. www.cs.umd.edu/users/elgammal/docs/eccv2000.pdf 2000.
  • 6[5]Gordon G, Darrel T, Harville M, et al. Background Estimation and Removal Based on Range and Color[J]. IEEE Conf, on CVPR. 1999,2:459-464.
  • 7[6]Harville M, Gordon G, Woodfill J. Foreground Segmentation Using Adaptive Mixture Models in Color and Depth[A]. Proceedings of the IEEE Workshop on Detection and Recognition of Events in Video[C]. Vancouver:Canadu,2001. 3-11.
  • 8McKenna S J, Jabri S, Duric Z, et al. Tracking groups of people [J]. Computer Vision and Image Understanding. 2000, 80(1): 42-56.
  • 9Rittscher J, Kato J, Joga S, et al. A probabilistic background model for tracking [A]. The 6th European Conference on Computer Vision [C]. Dublin, Ireland, 2000: 336-350.
  • 10Haritaoglu I., Harwood D., Davis L. S., W4: Real-time surveillance of people and their activities [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2000, 22(8): 809-830.

共引文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部