期刊文献+

基于分组的重尾分布极值指数估计量(英文) 被引量:1

Tail Index Estimator Based on Block Order Statistics
下载PDF
导出
摘要 利用顺序统计量分组,本论文提出了一类新的重尾分布的极值指数估计量,并在适当的正规变换条件下讨论了该估计量的强弱相合性及渐近正态性. This paper proposes a new kind of index estimator of a heavy-tailed distribution when only a few largest values are observed within blocks. The asymptotic properties, such as the weak and strong consistency and the asymptotic normality of this kind of tail index estimator have also been considered under suitable regularly varying conditions.
出处 《西南大学学报(自然科学版)》 CAS CSCD 北大核心 2008年第7期6-9,共4页 Journal of Southwest University(Natural Science Edition)
基金 国家自然科学基金资助项目(70371061) 重庆市自然科学基金资助项目(CSTC,2005BB8098)
关键词 重尾分布极值指数 相合性 渐近正态性 heavy-tailed extreme value index consistency asymptotic normality
  • 相关文献

参考文献9

  • 1[1]Pickands J.Statistics Inference Using Extreme Order Statistics[J].Ann Statist,1975,3:119-131.
  • 2[2]Dekkers A L M,Einmahl J H J,de Haan L.A Moment Estimator for the Index of an Extreme-Value Distribution[J].Ann Statist,1989,4:1833-1855.
  • 3邹佶叡,凌成秀.渐近无偏矩估计量(英文)[J].西南师范大学学报(自然科学版),2006,31(3):19-23. 被引量:4
  • 4王淑良,彭作祥.一类新的矩型估计量(英文)[J].西南大学学报(自然科学版),2007,29(5):61-65. 被引量:4
  • 5[5]Hill B M.A Simple General Approach to Inference about the Tail of a Distribution[J].Ann Statist,1975,3(5):1163-1174.
  • 6Peng Zuoxiang.Converagence for a Kind of Hill Estimator[J].西南师范大学学报(自然科学版),1998,(23):133-137.
  • 7[7]Davydov Yu,Paulauskas V,Rackauskas A.More on P-Stable Convex Sets in Banach Spaces[J].Theoret Probab,2000,13:39-46.
  • 8[8]Paulauskas Ⅴ.A New Estimator for a Tail Index[J].Acta Applicandae Mathematicae,2003,79:55-67.
  • 9[9]Resnick S I.Extreme Values,Regular Variation and Point Processes[M].NewYork:Springer-Verlag,1987.

二级参考文献25

  • 1凌成秀,彭作祥.属于同一吸引场的分布函数尾等价的充要条件[J].西南师范大学学报(自然科学版),2005,30(1):18-21. 被引量:3
  • 2[1]Hill B M.A Simple General Approach to Inference About the Tail of a Distribution[J].Ann Statist,1975,3:1163 -1174.1998.
  • 3[2]Peng Zuoxiang.Convergence for a Kind of Hill Estimator[J].Journal of Southwest Normal University,1998,23:133-137.
  • 4[3]Dekkers A L M,Einmahl J HJ,De Haan L.A Moment Estimator for the Index of an Extreme Value Distribution[J].Ann Statist,1989,17:1833-1855.
  • 5[4]Pan Jiazhu.Asymptotic Properties of Extreme Value Estimation[D].Beijing:Peking University,1995.
  • 6[5]Ferreira A,de Haan L,Peng L.On Optimising the Estimation of High Quantiles of a Probability Distribution[J].Statistics,2003,37(5):403-434.
  • 7[6]Jon Danielsson,Laurens de Haan,Liang Peng,Capser G.de Vries.Using a Bootstrap Method to Choose the Sample Fraction in Tail Index Estimation[J].Journal of Multivariate Analysis,2001,76:226 -248.
  • 8Dekkers A L M, de Haan L. On the Estimation of the Extreme-Value Index and Large Quantile Estimation [J]. Ann Statist, 1989, 17: 1795-1832.
  • 9Piekands J. Statistics Inference Using Extreme Order Statistics [J]. Ann Statist, 1975, 3: 119 - 131.
  • 10Hill B M. A Simple General Approach to Inference About the Tail of a Distribution [J]. Ann Statist, 1975: 3, 1163 -1174.

共引文献5

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部