期刊文献+

拖尾Rayleigh分布:基本性质及其应用 被引量:4

Heavy-tailed Rayleigh Distribution:Basic Properties and Their Applications
下载PDF
导出
摘要 针对使用拖尾Rayleigh分布对合成孔径雷达(Synthetic aperture radar,SAR)幅值图像建模时遇到的问题,本文讨论了拖尾Rayleigh分布的相关性质及其应用.首先,基于负数阶矩理论,本文提出了拖尾Rayleigh分布的比值估计、对数矩估计和迭代对数矩估计三种参数估计方法,并通过Monte Carlo仿真实验比较了它们的估计性能.其次,本文使用渐近级数计算拖尾Rayleigh分布的概率密度函数,基于插值多项式拟合,提出了高效计算密度函数的三步方法.最后,本文给出了SAR幅值图像基于拖尾Rayleigh分布的建模实例。结果表明,和一般的Rayleigh分布相比,拖尾Rayleigh分布可以精确反映SAR幅值图像尖峰厚尾的统计特征,因此它是SAR幅值图像建模的有效工具。 In order to solve the problems appearing in the heavy-tailed Rayleigh modeling of synthetic aperture radar (SAR) amplitude images, some basic properties and their applications are introduced for the heavy-tailed Rayleigh distribution in this paper. Firstly, based on the negative-order moments, ratio method, logarithmic moment method and iterative logarithmic moment method are presented to estimate the parameters of the heavy-tailed Rayleigh distribution, and their performances are compared according to Monte Carlo simulations. Secondly, the asymptotic series are used to evaluate the density function of heavy-tailed Rayleigh distribution, and an efficient three-step method is proposed using the interpolating polynomial fit. Lastly, real SAR amplitude images are modeled with the heavy-tailed Rayleigh distribution. Compared to the conventional Rayleigh distribution, the heavy-tailed Rayleigh distribution can accurately reflect the high peak and heavy tail of SAR amplitude images, so it is a useful tool for the modeling of SAR amplitude images.
出处 《自动化学报》 EI CSCD 北大核心 2008年第9期1067-1075,共9页 Acta Automatica Sinica
基金 国家重点基础研究发展计划(973计划)(2007CB311006) 国家自然科学基金(60574033)资助~~
关键词 SAR幅值图像建模 拖尾Rayleigh分布 负数阶矩 MONTE Carlo仿真 渐近级数 插值多项式拟合 SAR amplitude image modeling, heavy-tailed Rayleigh distribution, negative-order moments, Monte Carlo simulation, asymptotic series, interpolating polynomial fit
  • 相关文献

参考文献14

  • 1Oliver C, Quegan S. Understanding Synthetic Aperture Radar Images. Boston: Artech House, 1998.
  • 2Shao M, Nikias C L. Signal processing with fractional lower order moments: stable processes and their applications. Proceedings of the IEEE, 1993, 81(7): 986-1010.
  • 3Nikias C L, Shao M. Signal Processing with Alpha-stable Distributions and Applications. New York: Wiley, 1995.
  • 4Samorodnitsky G,Taqqu M S. Stable Non-Gaussian Random Processes: Stochastic Models with Infinite Variance. New York: Chapman and Hall, 1994.
  • 5Georgiou P G, Tsakalides P, Kyriakakis C. Alpha-stable modeling of noise and robust time-delay estimation in the presence of impulsive noise. IEEE Transactions on Multimedia, 1999, 1(3): 291-301.
  • 6Achim A, Bezerianos A, Tsakalides P. Novel Bayesian multiscale method for speckle removal in medical ultrasound images. IEEE Transactions on Medical Imaging, 2001, 20(8): 772-783.
  • 7Achim A, Tsakalides P, Bezerianos A. SAR image denoising via Bayesian wavelet shrinkage based on heavy-tailed modeling. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(8): 1773-1784.
  • 8Kuruoglu E E, Zerubia J. Modeling SAR images with a generalization of the Rayleigh distribution. IEEE Transactions on Image Processing, 2004, 13(4): 527-533.
  • 9Achim A, Kuruoglu E E, Zerubia J. SAR image filtering based on the heavy-tailed Rayleigh model. IEEE Transactions on Image Processing, 2006, 15(9): 2686-2693.
  • 10Szajnowski W J, Wynne J B- Simulation of dependent samples of symmetric alpha-stable clutter. IEEE Signal Processing Letters, 2001, 8(5): 151-152.

同被引文献35

引证文献4

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部