摘要
提出一种并行点火脉冲耦合神经网络(Parallelized firing pulse coupled neural networks,PFPCNN)模型的图像分割方法.首先用改进的Unit—linking PCNN(ULPCNN)模型对图像进行增强,便于后续的图像分割.然后采用PFPCNN新模型对增强后的图像进行分割,最后用最大香农熵方法判定最佳分割结果.各种复杂场景下的仿真实验及定量评价表明,本文提出的图像分割方法,其效果明显优于常规的PCNN分割方法。
A novel method for image segmentation based on parallelized firing pulse coupled neural networks (PFPCNN) is presented in this paper. At first, the improved unit-linking PCNN (ULPCNN) is used to enhance the image. Then, PFPCNN model is adopted to segment the enhanced image by the improved ULPCNN. Finally, the maximal Shannon entropy is used to determine the optimal result from the segmented images. Experimental results show that the proposed method is more effective than the traditional PCNN and other improved PCNN models by quantitatively evaluating their performance.
出处
《自动化学报》
EI
CSCD
北大核心
2008年第9期1169-1173,共5页
Acta Automatica Sinica
基金
航空科学基金(20060112116)
国防预研基金(9140A01060108DZ02)资助~~
关键词
脉冲耦合神经网络
并行点火模型
图像增强
最大香农熵
图像分割
Pulse coupled neural networks (PCNN), parallelized firing model, image enhancement, image segmentation, maximum Shannon entropy