期刊文献+

溶液相有机化合物pK_a的量子化学计算 被引量:1

Quantum Chemistry Computation on pK_a Values of Organic Compounds in Solution
下载PDF
导出
摘要 寻找一种理论计算方法来验证和补充实验数据,得到较为精确的溶剂化自由能和pKa,是众多理论化学家长期以来研究的重要方向。本综述较为详细地总结了近年发展起来的PCM理论模型在溶液相化合物溶剂化自由能、特别是近十年来有机化合物pKa的量子化学计算中的最新成果,比较了各种不同计算方法的精确性和各自特点。 Finding a theoretical calculation method to obtain the accurate solvation free energy and p Ka value so as to verify or complement the experimental data has long been an important aspect for many theoretical chemists. In this review, an overview of quantum chemistry computation research achievements concerning solvation free energy and pKa value of organic compounds in aqueous or organic mediums with the PCM solvation model in the recent years is presented. The accuracy and characteristics of different computational methods are also discussed.
出处 《化学进展》 SCIE CAS CSCD 北大核心 2008年第9期1241-1250,共10页 Progress in Chemistry
基金 国家自然科学基金项目(No.20274019 20574039) 天津市应用基础研究计划项目(No.07JCYBJC02700)资助
关键词 PKA 溶液相酸性 量化计算 极化连续介质模型(PCM) pKa condensed phase acidity quantum chemistry computation polarizable continuum model (PCM)
  • 相关文献

参考文献100

  • 1BGuissani Y, Guillot B, Bratos S. J. Chem .Phys., 1988, 88: 5850-5856
  • 2Kaniskan N, Ogretir C. J. Mol. Struct. (Theochem), 2002, 584 : 45-52
  • 3Jorgensen W L, Briggs J M, Gao J. J. Am. Chem. Soc., 1987, 109:6857-6858
  • 4Jorgensen W L, Briggs J M. J. Am. Chem. Soc., 1989, 111: 4190-4197
  • 5Byun K, Mo Y, Gao J. J. Am. Chem. Soc., 2001, 123: 3974-3979
  • 6Florian J, Warshel A. J. Phys. Chem. B, 1997, 101: 5583- 5595
  • 7Vamai P, Warshel A. J. Am. Chem. Soc. , 2000, 122: 3849- 3860
  • 8Schutz C N, Warshel A. Proteins, 2004, 55:711-723
  • 9Lim C, Bashford D, Karplus M. J. Phys. Chem., 1991, 95: 5610-5620
  • 10Kawata M, Tenno S, Kato S, Hirata F. J. Phys. Chem., 1996, 100:1111-1117

二级参考文献41

  • 1吕海婷,陈喜,湛昌国.溶液中去甲肾上腺素pK_a值的量子化学研究[J].华中师范大学学报(自然科学版),2004,38(2):205-206. 被引量:2
  • 2[1]Hardman J G,Limbird L E. Goodman and Gilman's the Pharmacological Basis of Therapeutics(9th edition)[M]. New York: McGraw-Hill, 1996.
  • 3[2]Nagy P I, Alagona G, Ghio C, et al. Theoretical conformational analysis for neurotransmitters in the gas phase and in aqueous solution. Norepinephrine[J]. J Am Chem Soc, 2003, 125: 2 770~2 785.
  • 4[3]Zhan C G, Bentley J, Chipman D M. Volume polarization in reaction field theory[J]. J Chem Phys, 1998, 108: 177~192.
  • 5[4]Zhan C G, Chipman D M. Cavity size in reaction field theory[J]. J Chem Phys, 1998, 109: 10 543~10 558.
  • 6[5]Zhan C G, Norberto de Souza O, Rittenhouse R, et al. Determination of two structural forms of catalytic bridging ligand in zinc-phosphotriesterase by molecular dynamics simulation and quantum chemical calculation[J]. J Am Chem Soc, 1999, 121: 7 279~7 282.
  • 7[6]Zhan C G, Landry D W, Ornstein R L. Reaction pathways and energy barriers for alkaline hydrolysis of carboxylic acid esters in water studied by a hybrid supermolecule-polarizable continuum approach[J]. J Am Chem Soc, 2000,122: 2 621~2 627.
  • 8[7]Schmidt M W, Baldridge K K, Boatz J A, et al. The general atomic and molecular electronic structure system[J]. J Comput Chem, 1993, 14: 1 347~1 363.
  • 9[8]Miertus S, Tomasi J. Approximate evaluations of the electrostatic free energy and internal energy changes in solution processes[J]. J Chem Phys, 1982, 65: 239~245.
  • 10[9]Cossi M, Barone V, Cammi R, et al. Ab initio study of solvated molecules: a new implementation of the polarizable continuum model[J]. Chem Phys Lett, 1996, 255: 327~335.

共引文献5

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部