期刊文献+

天然气管网抗震工程投资分配混沌粒子群算法 被引量:1

OPTIMUM DISTRIBUTION OF ASEISMIC ENGINEERING INVESTMENT FOR GAS PIPELINE NETWORK SYSTEM BASED ON PARTICLE SWARM ALGORITHM WITH EMBEDDED CHAOTIC SEARCH
下载PDF
导出
摘要 天然气管网是具有网络特性的复杂生命线系统,其抗震工程投资最优分配问题,因呈现高度的非线性及约束条件多的特点,难以用传统的优化方法求解。利用粒子群优化算法收敛速度快的优点,结合混沌运动的遍历性、伪随机性等特点,提出了一种基于混沌思想的粒子群优化算法,该算法保持了群体多样性,增强了多维空间的全局寻优能力,应用于天然气管网系统的抗震工程投资决策,有效地避免了一般演化算法的早熟收敛现象。以一个多源多汇天然气管网为例,进行了抗震工程投资的优化计算,计算结果表明,所建立的模型和算法具有一定的实用性。 Under the limit of engineering investment, the aseismic optimum design of pipeline system is used to minimize the sum of aseismic cost. Since optimal problems are computationally difficult under nonlinear objective function and combinatorial constraint conditions, conventional optimal techniques can hardly solve the problems of distribution of aseismic engineering investment for pipeline network system. Evolutionary-based particle swarm algorithm has been investigated in this paper. A new hybrid particle swarm algorithm makes use of the ergodicity of chaos to improve the capability of precise search and keep the balance between global and local search.Combining with Boolean cubical matrix disjoint calculation method used as aseismic reliability analysis tool of network system, the improved algorithm was applied to the optimization solution of investment distribution for gas pipeline network. The analysis of an example in a certain pipeline network system demonstrates the effectiveness and applicability of the established model and algorithm.
出处 《天然气工业》 EI CAS CSCD 北大核心 2008年第8期129-132,共4页 Natural Gas Industry
关键词 天然气管道 防震设计 优化设计 可靠性 投资 粒子群算法 混沌 gas pipeline,quakeproof design,optimization design,reliability,investment,particle swarm optimization algorithm,chaos
  • 相关文献

参考文献9

二级参考文献33

  • 1李爱国.多粒子群协同优化算法[J].复旦学报(自然科学版),2004,43(5):923-925. 被引量:398
  • 2高海昌,冯博琴,朱利b.智能优化算法求解TSP问题[J].控制与决策,2006,21(3):241-247. 被引量:120
  • 3周南良,数字逻辑,1992年,186页
  • 4梅启智,系统可靠性工程基础,1987年,76页
  • 5James Kennedy,Russell Eberhart.Particle swarm optimization [C].Proceeding of Neural Networks,1995.1942-1948.
  • 6K E Parsopoulos,M N Vrahatis.Recent approaches to global optimization problems through particle swarm optimization [J].Natural computing,2002,1:235-306.
  • 7Y Shi,R C Eberhart.Fuzzy adaptive particle swarm optimization[C].Proceedings of the Congress on Evolutionary Computation,Seoul,Korea,2001.
  • 8P Angeline.Using selection to improve particle swarm optimization [C],Proceedings of IJCNN,1999.84-89.
  • 9J Kennedy.Small worlds and mega-minds:effects of neighborhood topology on particle swarm performance [C].Proceedings of IEEE Congress on Evolutionary Computation,1999.1931-1938.
  • 10Xie Xiao-Feng,Zhang Wen-Jun,Yang Zhi-Lian.Adaptive particles swarm optimization on individual level [C].Int.Conf.On Signal Processing,Beijing,2002.1215-1218.

共引文献71

同被引文献7

引证文献1

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部